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Abstract 

Purpose: Handheld gamma cameras with coded aperture collimators are under inves-
tigation for intraoperative imaging in nuclear medicine. Coded apertures are a promis-
ing collimation technique for applications such as lymph node localization due to their 
high sensitivity and the possibility of 3D imaging. We evaluated the axial resolution 
and computational performance of two reconstruction methods.

Methods: An experimental gamma camera was set up consisting of the pixelated 
semiconductor detector Timepix3 and MURA mask of rank 31 with round holes 
of 0.08 mm in diameter in a 0.11 mm thick Tungsten sheet. A set of measurements 
was taken where a point-like gamma source was placed centrally at 21 different 
positions within the range of 12–100 mm. For each source position, the detector 
image was reconstructed in 0.5 mm steps around the true source position, resulting 
in an image stack. The axial resolution was assessed by the full width at half maximum 
(FWHM) of the contrast-to-noise ratio (CNR) profile along the z-axis of the stack. Two 
reconstruction methods were compared: MURA Decoding and a 3D maximum likeli-
hood expectation maximization algorithm (3D-MLEM).

Results: While taking 4400 times longer in computation, 3D-MLEM yielded a smaller 
axial FWHM and a higher CNR. The axial resolution degraded from 5.3 mm and 1.8 mm 
at 12 mm to 42.2 mm and 13.5 mm at 100 mm for MURA Decoding and 3D-MLEM 
respectively.

Conclusion: Our results show that the coded aperture enables the depth estimation 
of single point-like sources in the near field. Here, 3D-MLEM offered a better axial reso-
lution but was computationally much slower than MURA Decoding, whose reconstruc-
tion time is compatible with real-time imaging.

Keywords: Compact gamma camera, Coded aperture, Axial resolution, Image 
reconstruction, Intraoperative imaging, Radioguided surgery, Timepix3

Background
Accurate localization and comprehensible visualization of radioactive source distri-
butions play a crucial role in nuclear medicine [1–3]. Gamma cameras are an estab-
lished tool to image the distribution of gamma sources either as projection image or as 
tomography like in single photon emission tomography (SPECT) [2]. Recently, compact 
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gamma cameras are under investigation for intraoperative applications with different 
variants found [1, 4–6]. The majority of those cameras use parallel or pinhole collima-
tion to extract the spatial information of incoming gamma photons. Coded aperture 
imaging (CAI) was proposed as an alternative collimation technique, because it offers 
a better trade-off between resolution and photon harvesting [7]. By placing hundreds of 
small pinholes in a specific pattern on a radiopaque sheet, the directional information of 
gamma sources is encoded by the shadow of the mask cast on the detector. In order to 
obtain an interpretable image, reconstruction is required.

While other collimators do not require image reconstruction, for planar reconstruc-
tion in CAI an in-focus plane must be selected, i.e. a distance at which the source is 
assumed to be located. This, in principle, represents an inherent limitation of the 
approach but it enables obtaining a 3D reconstruction of the object from a single 2D 
detector image, at least for point sources  [8]: by reconstructing the captured detector 
image at several subsequent planes, a 3D reconstruction of the emitting object can be 
obtained. As depicted in Fig. 1, the lateral position of a point source is encoded by the 
shift of the mask’s shadow, while the source-to-mask distance is related to the size of the 
shadow. The size of the shadow is the size of the coded aperture pattern that is projected 
on the detector with a magnification factor M that can be described with the following 
relation [3, 8]:

with the detector-to-mask distance b and the source-to-mask distance z.
Hence, a degradation in the axial resolution with growing source-to-mask distance can 

be expected. Note that since the detector is encased within the camera body and thus 
not directly visible by the user, we chose this more intuitive definition, although others 
refer to the detector-to-source distance as z [9, 10].

Multiple approaches to 3D imaging of gamma sources in the field of intraoperative 
surgery applications have been proposed: stereo gamma cameras  [11, 12], simultane-
ously tracking and merging the image data of a freely movable camera [5], and direct 3D 
reconstruction from a single gamma camera with coded aperture  [3]. The dilemma of 
the axial resolution of a single camera with a coded aperture is that the sensitivity is high 
when the camera is close to the source but at the same time, multiple near field effects 
deteriorate the quality of the reconstructed images  [9, 10]. To the best of the authors’ 
knowledge, only two reconstruction algorithms have been developed and used for 3D 

(1)M = 1+ b/z

Fig. 1 The basic principle of 3D coded aperture imaging (CAI): the lateral position is encoded by the shift of 
the shadow and the distance is encoded by the size of the shadow. Figure modified from [8]
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CAI reconstruction: MURA Decoding and MLEM. The first retrieves a sequence of 
images at multiple distances from which the depth of a single source could be estimated 
by localizing the maximal response [13]. However, since the images reconstructed at dif-
ferent depths are independent of each other, being reconstructed as if the sources were 
all located at the same depth, this blurs the object along the z-direction and provides a 
poor axial resolution. The second is a 3D convolution-based maximum likelihood expec-
tation maximization algorithm (MLEM) that was introduced to reconstruct an entire 3D 
source distribution [10, 14].

Localizing the 3D position of spherical gamma sources is important in sentinel lymph 
node (SLN) biopsy (SLNB), where radioactively marked lymph nodes in the axilla need 
to be found and dissected for breast cancer staging [1, 15]. Compact gamma cameras are 
conveniently used for SLNB [15] for their good spatial resolution and sensitivity; we are 
here proposing a new compact gamma camera equipped with a coded aperture collima-
tor, which could, in turn, increase the sensitivity by keeping an excellent spatial reso-
lution and add the possibility of 3D imaging. SLNs are not point-like sources and can 
only be considered as such at larger distances, and it is known that extended sources are 
reconstructed with lower quality than point sources in CAI [3, 10]. Thus, the study pre-
sented in this paper with its point-like source provides a fundamental basis of the axial 
resolution in CAI and an in-depth analysis for extended sources is required.

In contrast to the extensive investigations into the lateral resolution of CAI [3, 9, 16], 
the axial resolution has received much less attention. Only a few articles exist, covering 
only a limited range of source-to-mask distances [3, 10, 13]. This paper aims at closing 
the existing gap and makes the following contributions: 

1. A systematic experiment and assessment of the axial resolution of a compact gamma 
camera equipped with a coded aperture collimator is presented.

2. We propose a reproducible method for measuring the axial resolution by calculating 
the FWHM of the CNR profile along the z-axis of a point-like source.

3. The 3D-MLEM algorithm from [10] is extended by a normalization factor and mask 
transmission that adapts the algorithm to a general camera setup.

4. This paper compares two coded aperture reconstruction methods and demonstrates 
that 3D-MLEM can be considered as the slower but superior reconstruction method 
compared to standard MURA Decoding which is faster but less precise.

The entire acquired dataset of 21 images and its preprocessed versions are publicly avail-
able at https:// zenodo. org/ doi/ 10. 5281/ zenodo. 83158 61.

Material and methods
This section describes our experimental gamma camera, how the image data were 
acquired, the reconstruction methods used and how the axial and lateral resolutions 
were determined.

Image acquisition

The experimental setup we used for image acquisition is composed of a Timepix3 appli-
cation-specific integrated circuit (ASIC) bump bonded to a 0.5 mm thick Silicon sensor 

https://zenodo.org/doi/10.5281/zenodo.8315861
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(MinipixEDU camera produced by Advacam) with a sensitive area of 14.08× 14.08 mm2 
coupled to a rank 31 no-two-holes-touching (NTHT) MURA Mask having 0.08  mm 
diameter holes in a 0.11 mm thick Tungsten sheet. The basic MURA pattern was dupli-
cated in a 2× 2 arrangement leading to a total mask size of 9.92× 9.92 mm2 . This coded 
aperture collimator used for the compact gamma camera MediPROBE2 was found to 
provide the highest lateral resolution among the intraoperative gamma cameras cur-
rently available [1]. We designed a 3D-printed case to keep the detector and the collima-
tor in a fixed distance and axially aligned. The case holds the mask in a detector-to-mask 
distance b of 20 mm. We used an automatic linear axis, which enabled us to move the 
source automatically and with high precision without interrupting the measurement 
procedure. An L-shaped holder was attached to the axis on which the 241 Am source was 
clamped. The source’s nominal diameter is 1 mm but was previously measured to have 
a FWHM of 0.65  mm  [17] and emits gamma photons of 59.5  keV. The source holder 
together with the gamma camera is depicted in Fig.  2. The coded aperture mask was 
originally designed for sources of 30  keV; nevertheless, the source-mask combination 
used in this paper was the only one available to us. Besides, it has been shown that usage 
of this mask at higher energies (80 kV X-ray beam) may reduce the image contrast but 
does not impede the imaging with a high CNR [18].

The images were recorded with a software tool from Advacam called Pixet. Instead of 
collecting a predefined number of photons per measurement, we kept the acquisition 
time constant for each acquisition. We recorded 9000 frames with an acquisition time 
of 0.1 s in “Tracking” mode. In this acquisition mode, the energy deposited by the inter-
acting particles in the sensor is registered in each pixel, together with the time instant 
at which the interaction is revealed in the pixel. This information allows for the recon-
struction of tracks released in the sensor from the impinging radiation, via a cluster-
ing algorithm based on time correspondence and spatial proximity of hits. This process, 
from which the name of the acquisition mode is derived, ultimately allows us to infer the 
type of radiation revealed by the detector based on its energy and the shape of its track. 
The time interval of 0.1 s per frame was chosen to avoid double counting of photons in 
a single pixel. A lower threshold of 5 keV was selected and no further energy windowing 

Fig. 2 Images were captured with source-to-mask distances from 12 to 20 mm in 2 mm steps and from 25 to 
100 mm in 5 mm steps (21 positions). The photograph in the top right corner shows the source holder on the 
left and the gamma camera in its housing with parts of the Tungsten mask visible on the right
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was applied (i.e. no hit was discarded from the final detector image based on the energy 
deposited in a pixel). Each acquisition lasted about 20 minutes, including 15 minutes 
active acquisition and time required for the intermediate processing of the detector. The 
pixel value in the resulting image represents the energy deposited in keV in each pixel 
integrated over the duration of the whole acquisition. We captured images at 21 differ-
ent source-to-mask distances in the range of 12–20 mm in steps of 2 mm and from 20 to 
100 mm in 5 mm steps (Fig. 2).

To eliminate outliers and cope with erroneous pixels, the raw detector images were 
preprocessed before undergoing image reconstruction. Preprocessing contains outlier 
replacement by the median value of their 3× 3 neighborhood. Per image, all pixels hav-
ing values outside the range of the 1st and 99th percentile were considered to be outliers. 
Additionally, Gaussian smoothing with a sigma of 1 pixel was applied. Figure 3b visual-
izes the raw and preprocessed data. The 21 acquired detector images and their preproc-
essed versions are available at https:// zenodo. org/ doi/ 10. 5281/ zenodo. 83158 61.

Reconstruction methods

We analyzed two different reconstruction methods for CAI: the most commonly used 
MURA Decoding and an improved version of 3D-MLEM.

MURA decoding

The algorithm for MURA Decoding was already proposed with the invention of the uni-
formly redundant arrays (URA) [7], the predecessor of today’s widely used coded aperture 
pattern called Modified Uniformly Redundant Arrays (MURA) [19]. MURA Decoding is 
the inverse filter to the encoding pattern and is based on a linear and deterministic imag-
ing model. The decoding pattern can directly be derived from the MURA pattern and its 

Fig. 3 a Successive number of iterations for the 3D-MLEM algorithm applied to the source and 
reconstructed at 30 mm. b Raw (left) and preprocessed detector image (right). c The left image shows the 
forward projection of 3D-MLEM for the source at 40 mm and the right image shows the reconstruction 
at 40 mm. Due to the 2× 2 arrangement of the basic MURA pattern, multiple ghost sources (blue arrows) 
along the image border emerge in addition to the true source (green circle) from the 3D-MLEM algorithm for 
sources that are more than 40 mm away

https://zenodo.org/doi/10.5281/zenodo.8315861
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derivation from the encoding pattern can be found in [20]. The decoding pattern dz(x, y) 
used in the reconstruction step is magnified to target an in-focus plane according to the 
distance between the plane and the mask, denoted as z [21]. MURA Decoding makes use 
of circular convolution which is assured by two aspects: the 2× 2 arrangement of the basic 
MURA pattern, and the use of the central part of the detector image p(x, y). The central 
part, C p(x, y), z  , is the portion of the detector onto which one entire mask pattern (i.e. a 
quarter of the 2× 2 arrangement) is projected. The size of this projection surely depends on 
the magnification factor M given by Eq. (1), therefore on z. As a result, the size—in pixels—
of the reconstructed images depends on the source-to-mask distance. The reconstructed 
image f̂z(x, y) is obtained by the following operation where “ ⊛ ” denotes the circular 2D 
convolution operator:

MURA Decoding can be considered the most widely used reconstruction method in 
CAI, due to its simplicity and speed when carried out in the Fourier domain [22]. A lim-
itation of MURA Decoding is the underlying linear and deterministic imaging model. 
Especially when imaging sources of low photon flux, degradation due to substantial 
Poisson noise contribution must be expected. Deviations from the linearity assump-
tion are known and the induced systematic noise increases as the source moves closer 
to the camera [10, 23]. The algorithm used in this paper has been implemented in MAT-
LAB R2022b and to accelerate the process, the convolution is carried out in the Fourier 
domain. The pixel values of the reconstructed images are of minor importance for this 
study and only the relative values affect the CNR and hence the axial resolution.

3D‑MLEM

The maximum likelihood expectation maximization algorithm (MLEM) is an iterative 
algorithm that estimates the source distribution with the highest likelihood assuming the 
measured detected photons follow a random Poisson process  [24]. The original MLEM 
algorithm was adapted to CAI by replacing the computationally expensive system matrix 
with a convolutional approach [10]. For more information, the reader is referred to  [22]. 
Additionally to the 2D reconstruction method, Mu et al. [10] extended this algorithm to dif-
ferentiate between different source-to-mask distances. Thus, an entire 3D source distribu-
tion can be reconstructed. Similarly to MURA Decoding, the entire gamma camera is solely 
defined by its point-spread function (PSF) hz(x, y) . The algorithm for the (k+ 1)th iteration 
of reconstructing the source distribution f̂ (k+1)

z (x, y) at a source-to-mask distance z is given 
by

where “ ∗ ” represents the linear 2D convolution, “ × ” the 2D correlation and “·” the 
point-wise multiplication. For better readability the lateral coordinates (x, y) have been 
omitted.

(2)f̂z(x, y) = C
(
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)

⊛ dz(x, y).
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However, two aspects are not taken into account by 3D-MLEM: first, a mask that is 
smaller in dimension than the detector and second, transmission of gamma photons 
through the radiopaque material. As these two conditions were verified in our experimental 
setup, we extended the 3D-MLEM algorithm with two modifications: a more general nor-
malization term nz that accounts for the size difference between the mask and the detector 
and a forward simulation function F , which incorporates mask transmission.

Normalization term The 3D-MLEM formula is derived from the general MLEM formula 
with the system matrix A , where its entries aij denote the probability that photons from 
source j are detected in detector pixel i. In literature the following normalization term, also 
referred to as sensitivity, can be found [24]:

This summation over the matrix columns represent the summed likelihood that the pho-
ton from source j is detected by any pixel of the detector. nj is a function over j and 
in general, this is not a homogeneous distribution. When the coded aperture mask is 
smaller than the detector, photons that are emitted further outside the center have a 
higher possibility to pass through a pinhole but not hitting the detector. One can imagine 
this by looking at the mask shadow cast by an off-center point source, where only part of 
the shadow hits the detector. The further off-center the source is, the higher the share of 
the shadow that is not falling within the detector area and the smaller the summed likeli-
hood nj becomes. The normalization factor nj ensures that the inherent forward projec-
tion has approximately as many detected photons as the given detector image p.

Translated to the convolution-based 3D-MLEM algorithm the normalization factor nj is 
an image that depends on the source-to-mask distance nz . It can be calculated offline by 
a backward projection of an entirely illuminated detector to the plane in focus. Thus, we 
obtain nz by calculating the cross-correlation between an all 1 image ( 1 ) and the PSF at the 
given distance z:

Forward simulation with transmission Transmission noise emerges from photons that 
penetrate the mask and in this paper it is approximated as uniform background noise 
proportional to the transmission coefficient of the coded aperture mask. With a mask 
thickness of 0.11 mm and a 59.5 keV source (see “Image acquisition” section) the trans-
mission probability t of our setup is approximately 46%, meaning that about half of the 
photons pass through the mask. Because this transmission is high, the forward projec-
tion F of the 3D-MLEM algorithm had to be adapted. The projected image becomes a 
weighted superposition of the projection of the reconstruction fz and a uniform trans-
mission noise image. The weight is set according to the transmission rate t and the sum 
of emitted photons from the in-focus plane fz:

(4)nj =
n

∑

i=0

Aij

(5)nz = hz × 1

(6)F
(

fz , hz
)

= (1− t)
(

fz ∗ hz
)

+ t
∑

x,y

fz .
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Additionally, we do not use the PSF of the NTHT pattern but of the two-holes-touching 
(THT) pattern to avoid periodical background noise [22].

In contrast to MURA Decoding, we decided to use the entire detector image for the 
reconstruction. This choice ensures that the output maintains a consistent size of 256× 256 
pixels. Because MLEM is based on the convolutional model, the field of view (FOV) is equal 
to the FOV of a single pinhole collimator. All in all, the proposed 3D-MLEM algorithm can 
be summarized as follows:

The 3D-MLEM algorithm assumes that the pixel intensity represents photon hits. Our 
detector images, however, represent deposited energy per pixel. The conversion to pho-
ton hits is not trivial due to charge sharing between neighboring pixels. Comparing the 
axial resolution of the source at 50 mm based on the detector image and on the same 
image divided by 59.5  keV (ignoring any charge sharing), the absolute difference was 
less than 2.28  µm Thus, we decided to not use any conversion and directly apply the 
3D-MLEM to our captured detector images. As with MURA Decoding, the pixel val-
ues of the reconstructed images do not affect the axial resolution and only the relative 
intensities will influence the CNR. We decided to apply 40 iterations for the reconstruc-
tion from the acquired detector images (see Fig. 3a) since, from visual inspections, we 
found that to be a good compromise between noise amplification and reconstruction 
quality. The 3D-MLEM algorithm was implemented in Python (3.8) using the NumPy 
(1.24) library and, similar to MURA Decoding, all convolutions are performed in the 
Fourier domain.

Assessing the axial resolution

The axial resolution expresses how well a point-like source can be localized in the depth 
direction, i.e. along the z-axis. We use the profile of the contrast-to-noise ratio (CNR) 
along the z-direction to determine the axial resolution as the full width at half maximum 
(FWHM) of this Gaussian-like curve: this provides a more intuitive understanding of the 
spatial resolution and takes into account not just the source intensity—as in [3], where the 
pixel intensity of the source was used to compute the axial spatial resolution—but also how 
well the source can be distinguished from the background noise. The following definition of 
the CNR was employed:

where S̄ denotes the mean intensity of the signal near the true source position, while B̄ 
and σB are respectively the mean intensity and the standard deviation of the background.

First, we reconstructed each source’s image within a broad range from 5 to 100 mm 
in 5 mm steps to locate the source. Second, we reconstructed images within a tighter z 
range containing the actual source position in 0.5 mm steps resulting in sets of images 
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ranging from 60 to 240 images for MURA Decoding and 54 to 101 for 3D-MLEM. From 
here on, we will refer to a set of reconstructions of the same detector image at different 
depths as an image stack. For easier handling, the reconstructions from MURA Decod-
ing were resized by bilinear interpolation to the image size of the reconstruction at the 
true source position. To quantify the impact of the resizing procedure, the axial resolu-
tion was computed for both the resized and non-resized stacks of reconstructions for 
a source placed at 30 mm. The resulting values were 11.9± 0.5 mm for the resized and 
12.5± 0.5 mm for the non-resized one, which are compatible within the errors. There-
fore, for the sake of simplicity, we decided to continue our analysis on the resized stacks. 
No resizing was required for 3D-MLEM images, as the algorithm returns images of a 
fixed size.

To determine the CNR for each image of a stack, the signal S and background B is 
required. To minimize the influence of the operator on the CNR computation, we wrote 
a semi-automatic algorithm that sampled the whole image, thus avoiding manually 
choosing regions of interest (ROIs) for S and B and ensuring the reproducibility of the 
procedure. The diameter of the ROI was chosen separately for each stack, i.e. each cap-
tured detector image, based on the true source size (see “Image acquisition” section) and 
the true source distance. First, the FWHM source diameter of 0.65 mm was converted to 
pixels with respect to the FOV at the true source distance and then it was rounded to the 
nearest integer number to obtain the ROI diameter. The equation for the FOV of MURA 
Decoding was taken from [3] and for 3D-MLEM the FOV of a pinhole collimator is used.

An imageJ macro sampled all possible positions of the ROIs per image stack: 
depending on the image size and ROI diameter there were between approximately 
14,000 and 31,000, and 54,000 and 65, 000 ROI positions per image for MURA Decoding 
and 3D-MLEM. For each ROI its position in pixels, the average intensity, and standard 
deviation were calculated and stored for each image of the stack. The ROI with the high-
est average intensity in the in-focus image (i.e. the image reconstructed at the z where 
the source was actually located) was selected as the signal S. A constraint was introduced 
that restricted the signal ROI to be in the inner 50% of the image area to avoid measur-
ing one of the ghost sources along the image border as visible in Fig. 3c. Furthermore, 
ROIs that overlapped with S were discarded from further processing. All other ROIs 
were selected as background ROIs and the background mean B̄ was computed as the 
average intensity of all background ROIs; the same was performed for the standard devi-
ation: σ̄B . Once the signal ROI was found in the in-focus image its position was kept the 
same for each image of the stack. The same was done for the ROIs where B̄ and σ̄B were 
computed.

Finally, a Gaussian curve with offset of the following form was fitted through the CNR 
profile: CNR(z) = α + (β − α) exp

(

−(z − γ )2/(2 δ2)
)

 with the fitting parameters α , β , 
γ , and δ . The fitting procedure was carried out in Python (3.8) with the curve_fit func-
tion from SciPy (1.10). The axial resolution and its standard deviation through the fitting 
procedure are reported as FWHM with following correspondence between the Gauss-
ian’s standard deviation δ and the FWHM [13]:

(9)FWHM = 2
√
2 ln 2 δ ≈ 2.35 δ
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Assessing the lateral resolution

In order to compare our results with values from literature we measured the lateral 
resolution as well. This allows us to additionally report the axial resolution relative to 
the lateral resolution. Following the suggestion given in a recent review on intraopera-
tive gamma cameras [1], we determined the lateral resolution for 30 mm, 50 mm, and 
100 mm source-to-mask distance.

To compute the lateral resolution, we first selected the in-focus image within the image 
stack used for the assessment of the axial resolution. We then took the source profile 
along the row with the highest pixel intensity. A Gaussian curve with offset was fitted to 
this profile and the FWHM value was obtained from the resulting standard deviation. As 
the FWHM value was given in pixels, it was converted to mm by using the FOV of the 
respective reconstruction method.

Results
Proposed 3D‑MLEM algorithm

A comparison between the initial 3D-MLEM and 3D-MLEM with our proposed modi-
fications is shown in Fig. 4. Note how the source at 30 mm distance is barely visible in 
the initial 3D-MLEM reconstruction. Additionally, the maximum intensity of the image 
stack is located in the reconstructed image at 45 mm. The same artifact is also visible in 
all other image stacks of sources at different distances. The image stack of our proposed 
3D-MLEM algorithm shows a single bright spot at a distance where we indeed placed 
the source, despite the high transmission noise.

3D reconstructions

All 21 detector images were reconstructed within a range from 5 to 100 mm in 5 mm 
steps to roughly locate the source in the axial direction. The first eight of the 20 images 
from the image stack of the source at 30 mm distance are shown in Fig. 5. The entire 
image stack for the sources at 50 and 100  mm can be found in “Appendix  A”. Both 
methods show bright spots in the center of the reconstructed image at the true dis-
tance. Overall, the background of the 3D-MLEM images looks more uniform while 
MURA Decoding yields images with a higher background noise. For reconstructions at 
50 mm (pixel intensity normalized to the range of 0 to 1) with the source positioned at 
z = 50 mm from the collimator, we yield a σB of 0.0281 and of 8.7614 × 10−5 for MURA 

Fig. 4 The proposed 3D-MLEM algorithm (right) in comparison to the original 3D-MLEM (left) from [10] 
applied to the source at 30 mm distance. The center, marked by the red square, has been magnified for better 
visualization
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Decoding and 3D-MLEM. From Fig. 5 itself a worse axial resolution can already be seen 
for MURA Decoding, since the source is also visible in the reconstructions at 25 and 
35 mm distance. Additionally, 3D-MLEM is capable of reconstructing at distances that 
are closer than 15 mm.

Axial resolution

Table 1 shows the resulting FWHM axial resolution for each of the captured 21 images. 
Figure 6 presents the CNR profiles and Gaussian fits of a few image examples, from which 
the FWHM was derived. A clear difference between MURA Decoding and 3D-MLEM 
reconstruction can be seen: first, the axial resolutions obtained by 3D-MLEM are better 
(smaller in value), as their profiles are narrower than those obtained with MURA Decod-
ing and, additionally, the CNR values, i.e. the height of the Gaussian curves, are greater 
by a factor between approximately 60 and 30,  000 for the 3D-MLEM. The axial reso-
lutions between raw and preprocessed detector images are almost identical. On aver-
age the ratios of the FWHM from preprocessed to raw detector images are 1.05± 0.10 
(MURA Decoding) and 0.93± 0.12 (3D-MLEM). However, the final objective of CAI 
reconstruction is to obtain a clear and interpretable image, and Fig. 9 from the “Appen-
dix B” shows that reconstructions based on the preprocessed images contain less back-
ground noise. Therefore, from here on the axial resolution of the preprocessed images 
will be discussed. The axial resolutions are 11.9± 0.5 mm and 2.76± 0.11 mm (source at 
30 mm, magnification M = 1.67 ), 17.5± 1.0 mm and 5.97± 0.09 mm (source at 50 mm, 
M = 1.40 ), and 42.2± 0.9 mm and 13.48± 0.86 mm (source at 100 mm, M = 1.20 ) for 
MURA Decoding and 3D-MLEM respectively. The average standard deviations intro-
duced by the fitting procedure are 3.9 % (MURA Decoding) and 2.7 % (3D-MLEM). For 
easy comparison with other imaging systems, the axial resolution is plotted in Fig.  7 
against the magnification factor M, with the corresponding source-to-mask distance val-
ues. For sources at a distance greater than 40 mm, 3D-MLEM reconstructs up to eight 
ghost sources in a regular pattern surrounding the true central position, as shown in 
Fig. 3c.

Fig. 5 3D-MLEM (left) and MURA Decoding (right) of the 30 mm source. The distance between the mask and 
the in-focus plane in mm is indicated in the top left corner. MURA Decoding is not capable of reconstructing 
planes that are closer than 11 mm. A magnification of the area around the source (red dotted square) is 
shown in the bottom left corner



Page 12 of 21Meißner et al. EJNMMI Physics           (2024) 11:30 

Lateral resolution

The lateral resolutions based on the preprocessed detector images measured for MURA 
Decoding and 3D-MLEM are respectively 0.74 mm and 0.27 mm at a source distance 
of 30 mm, 0.80 mm and 0.29 mm at 50 mm and 1.04 mm and 0.4 mm at 100 mm. This 
results in ratios between axial and lateral resolutions of 16 :1 and 10 :1 , 22 :1 and 21 :1 , 
and in 41 :1 and 34 :1 for MURA Decoding and 3D-MLEM, respectively.

Computation time

To compare the computational performance of both reconstruction methods with the 
considered implementations, the average runtime for one image in a stack of images is 
presented here. The total runtime for reconstructing an image stack containing between 
54 and 101 reconstructions with the 3D-MLEM algorithm for 40 iterations on a normal 
laptop computer with a 6-kernel Intel Core i7-9750 H processor (2.6 GHz) and 16 GB of 
RAM ranged from 348 s to 579 s. Relative to the number of images per stack the average 
runtime is ( 5.68± 1.40) s per image for 40 iterations.

The runtime of MURA Decoding was obtained using a laptop equipped with a 12th 
generation Intel Core i7-12700 H processor (2.3 GHz) and 32 GB of RAM. The total 

Table 1 The FWHM axial resolutions are displayed separately for the two reconstruction methods 
(MURA Decoding and 3D-MLEM) and for raw and preprocessed detector images

†Additional ghost sources appear in the resulting image stack

The standard deviation values are obtained through the fitting algorithm

Source distance
[mm]

MURA decoding 3D‑MLEM

Raw
[mm]

Preprocessed
[mm]

Raw
[mm]

Preprocessed
[mm]

12 5.3 ± 0.6 5.3 ± 0.6 2.17 ± 0.03 1.75 ± 0.03

14 4.7 ± 0.1 4.7 ± 0.1 2.20 ± 0.02 1.80 ± 0.06

16 6.0 ± 0.2 5.8 ± 0.2 2.32 ± 0.04 1.85 ± 0.08

18 6.9 ± 0.2 6.2 ± 0.2 2.34 ± 0.02 2.02 ± 0.03

20 7.5 ± 0.1 7.3 ± 0.1 2.60 ± 0.09 2.26 ± 0.02

25 11.0 ± 0.4 9.8 ± 0.4 2.37 ± 0.02 2.54 ± 0.04

30 12.1 ± 0.5 11.9 ± 0.5 2.74 ± 0.02 2.76 ± 0.11

35 17.2 ± 0.9 15.1 ± 0.8 2.45 ± 0.10 2.01 ± 0.14

40 16.9 ± 0.9 18.5 ± 1.1 †4.32 ± 0.12 †3.51 ± 0.15

45 14.2 ± 0.8 18.4 ± 1.3 †5.48 ± 0.06 †4.69 ± 0.13

50 15.6 ± 1.0 17.5 ± 1.0 †5.53 ± 0.09 †5.97 ± 0.09

55 18.3 ± 1.1 18.8 ± 1.1 †5.52 ± 0.11 †4.73 ± 0.08

60 19.4 ± 0.9 19.9 ± 0.9 †6.71 ± 0.11 †5.24 ± 0.10

65 23.9 ± 0.9 28.0 ± 1.2 †7.04 ± 0.12 †6.67 ± 0.10

70 22.2 ± 0.7 23.8 ± 0.9 †8.19 ± 0.17 †7.37 ± 0.11

75 26.6 ± 0.7 27.8 ± 0.7 †9.79 ± 0.17 †9.10 ± 0.17

80 32.6 ± 0.5 35.4 ± 0.5 †10.40 ± 0.18 †11.64 ± 0.27

85 32.7 ± 0.2 35.9 ± 0.4 †11.11 ± 0.21 †12.34 ± 0.24

90 37.0 ± 0.4 37.8 ± 0.5 †11.20 ± 0.24 †10.37 ± 0.24

95 35.2 ± 0.8 38.3 ± 0.8 †12.28 ± 0.29 †14.81 ± 0.41

100 34.8 ± 0.4 42.2 ± 0.9 †14.84 ± 0.66 †13.48 ± 0.86
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reconstruction time for image stacks containing between 60 and 240 reconstructions 
ranged from 31.2 ms to 547 ms with a mean of (1.3± 0.5) ms per image. As a result, 
MURA Decoding is approximately 4400 times faster than 3D-MLEM with the consid-
ered implementations.

Fig. 6 The CNR profiles over the distance used for reconstruction for a selection of source positions: the 
semi-transparent red line of squares and the blue line of triangles show the CNR profiles of MURA Decoding 
and 3D-MLEM reconstruction. The Gaussian curves with offset, represented by the bold red dotted line 
(MURA Decoding) and the blue dashed line (3D-MLEM), were fitted to the CNR profiles. These curves serve as 
the basis for determining the axial resolution, and the corresponding FWHM values are displayed in the top 
right corner of each graph

Fig. 7 The axial resolution for both presented reconstruction methods plotted against the dimensionless 
magnification factor M. The orange circle and green dashed line represent reference values for the axial 
resolution estimated from literature [10, 13]. Note that the source-to-mask distance at the top axis only 
corresponds to values from this paper
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Discussion
The aim of this paper was to systematically assess the axial resolution of a gamma cam-
era equipped with a coded aperture collimator. Generally, we found the preprocess-
ing of the detector images to have a beneficial impact on the axial resolution, more for 
3D-MLEM than for MURA Decoding, especially for distances below 40  mm. This is 
counter-intuitive, because one would think that Gaussian blurring should decrease the 
resolution since it acts as a low-pass filter and widens the peak.

Reconstruction methods

Two improvements were made to the initial convolutional-based 3D-MLEM from [10]: 
first, a general normalization term is proposed that takes into account that photons 
emitted closer to the edge of the FOV are less likely to hit the detector. Second, trans-
mission noise was added to the forward projection step. The absence of artifacts and 
the low background noise (see Fig.  4) demonstrate the superiority of our proposed 
modifications.

Unlike MURA Decoding, the 3D-MLEM algorithm outputs a full 3D distribution since 
the contribution of all slices are taken into account. This, however, requires more convo-
lution operations. For each slice in each iteration the forward simulation, the backward 
simulation and another forward simulation with the updated slice are calculated. Addi-
tionally, the images that are processed—the entire detector image and the PSFs—are 
generally larger than for MURA Decoding. This makes it computationally expensive and 
thus slow, but more accurate. Even though the runtime comparison was not carried out 
on the same computer and improvements in the implementation are likely possible, the 
order of magnitude that 3D-MLEM is slower than MURA Decoding is enough to say 
that it is too slow for intraoperative use.

Additionally, 3D-MLEM also provides the forward projection of the estimated recon-
struction, which can be used for checking how well the reconstruction is in accordance 
with the acquired detector image (as an example see the image on the left in Fig. 3c). 
Nevertheless, the long runtime renders the 3D-MLEM algorithm unsuitable for usage in 
an intraoperative scenario where the computation time substantially influences the prac-
tical utility of the gamma camera.

The ghost sources that the 3D-MLEM algorithm reconstructs for sources more than 
40 mm away (see image on the right of Fig. 3c) are likely caused by the self-similarity of 
the mask pattern due to the 2× 2 arrangement. From 40 mm on, more than the entire 
mask pattern is visible on the detector image. The surrounding margin (see the bottom of 
the detector images in Fig. 3b), which is not illuminated by the mask pattern, is relatively 
small and contains background noise, so the algorithm has only little area that would 
penalize a set of ghost sources that are partially contributing to the correct pattern in the 
center. It should be noted that these ghost sources do not completely prohibit a recon-
struction, but they add an element of ambiguity. This issue could also be addressed by 
adapting the algorithm to focus on the central portion of the detector image similar to 
MURA Decoding, which however would come with the cost of a narrower FOV.

The higher resolution in both lateral and axial directions makes 3D-MLEM interesting 
for large gamma cameras in SPECT systems, where runtime is less important.
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Comparing the axial resolution to literature

Setting the axial resolution in relation to the magnification factor M from Eq. (1), has the 
advantage of eliminating the dependency on the detector-to-mask distance b and hence 
making a comparison with literature values easier. Figure 7 shows the axial resolution 
plotted against the magnification factor M.

Unfortunately, only few values in literature exist with which we can compare our 
results: in a previous experiment  [13] with the same coded aperture collimator but a 
slightly different detector-to-mask distance b, the same MURA Decoding as in this work 
was used. The authors evaluated the zone of best-focus of a ring-shaped object as the 
zone where the image contrast is maximum and constant within about 1%. The zone of 
best-focus was reported as approximately 3 mm, while the lateral resolution was meas-
ured to be 0.6 mm at a source-to-mask distance of about 50 mm [13]. The given contrast 
profile is not equivalent to the CNR profile used in this work for assessing the axial reso-
lution, but can still serve as a benchmark. When estimating the FWHM from the given 
graph, we obtain an FWHM of approximately 12  mm. This axial resolution is slightly 
better than the values reported in this paper but still provides good plausibility. Com-
paring the relative resolution as the ratio of axial to lateral resolution, we yield a ratio 
of 12mm/0.6mm = 20 at 50 mm distance. Our assessments of a ratio of 22 and 21 for 
MURA Decoding and 3D-MLEM at 50 mm distance are in good accordance with that.

A rough classification for the reported 3D-MLEM results can be deducted from [10]: 
in the reported experiment, the authors placed sources shaped like an “H” and a “>”-sym-
bol at 164 mm and 244 mm respective distances from the mask and reconstructed the 
scene with 3D-MLEM. Since in their figure, the two sources appear separately in their 
corresponding planes, the axial resolution (FWHM of the CNR) must be smaller than 
half the distance between them, approximately 20 mm. Our values at comparable M are 
lower than that and thus not contradictory.

The presented findings of this work can answer the research question explicitly men-
tioned in [3] on “What role iterative reconstruction algorithms [...] will play in improv-
ing Z resolution”: dividing the axial resolution obtained by the iterative 3D-MLEM 
algorithm by the axial resolution obtained by MURA-Decoding for each source position, 
gives an average factor of 0.3± 0.1 . Hence, on average the axial resolution of 3D-MLEM 
is one third of the values from MURA Decoding, meaning with the first method we 
achieve a three times better axial resolution.

Intraoperative application in SLNB

In a recent review paper about intraoperative gamma cameras [1], the authors state that 
for SLNB there is no consensus on the requirements for imaging parameter, including 
the lateral and axial resolution. The authors of [25] consider a lateral resolution of 6 mm 
to be sufficient. However, SLNs can vary in size approximately between 5 and 20 mm [3, 
11]. Ideally, for a robust 3D localization of SLNs a spatial resolution much better than a 
few millimeters is required. Nonetheless, the definition of an upper bound for the spatial 
resolution is needed before reliable assertions for the intraoperative application of com-
pact gamma cameras in SLNB can be made.

With the experimental setup presented here, an axial resolution below 5 mm can only 
be reached in source-to-mask distances lower than approximately 14  mm for MURA 
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Decoding and lower than 50 mm for 3D-MLEM. Therefore, the latter ensures a precise 
depth estimation for farther sources, at the cost of a long computational time that pre-
vents the method to be used in real-time during intraoperative procedures. It must be 
emphasized, though, that the spatial resolution presented here was computed for point-
like sources and consequently represents the best spatial resolution achievable. Further 
studies need to be pursued in order to assess how the axial resolution degrades when 
extended sources are being analyzed, as in the case of SLNs.

Limitations

For pinhole and parallel collimators, measuring the spatial resolution as the FWHM of 
a point source is intuitive as the superposition principle allows the usage of the FWHM 
also when working with extended or multiple sources. However, the superposition 
assumption is more problematic in CAI. Extended sources are known to be recon-
structed in lower quality than point sources  [3, 10]. Furthermore, we do not have the 
entire 3D position of the sources, only the source-to-mask distance. Thus, an entire 3D 
localization error as in [11], cannot be presented here. Nor did we test different values 
for detector-to-mask distance b.

In an intraoperative experiment with pigs, a reduction of the dynamic range was 
observed when a very bright source was present. It was called “concentration effect” and 
makes weaker sources less visible [3]. The 3D-MLEM algorithm is supposedly immune 
to this effect, but that has not been specifically investigated [10]. However, with a CdTe 
photon counting detector of the Medipix2/Timepix2 series  [13], we observed that a 
241 Am gamma source with an activity of 1µ Ci is still visible when a 1 mCi 241 Am source 
is placed nearby and used as a background. This is possible thanks to the extended 
counting linearity range, the practical immunity to noise and the pixel-wise functioning 
of our photon counting detector, with respect to scintillator-based, Anger-logic based 
gamma cameras.

Another aspect that was outside the scope of this paper is the impact of a lateral shift 
of the source: due to near field artifacts a degradation in lateral resolution has been 
reported when a source is off-center [9]. A decrease in axial resolution can be expected, 
but the exact effect remains an open question.

A thin mask causes small collimation artifacts but brings a high transmission rate. 
That means septal penetration, which in turn widens the PSF and makes the shadow 
more fuzzy. The question on how transmission affects the lateral and axial resolution 
remains open.

Conclusion and outlook
In this paper, we systematically assessed the axial resolution of a gamma camera 
equipped with a coded aperture collimator with 0.08  mm holes. We calculated the 
FWHM by reconstructing images closely around the true source distance and subse-
quently fitting a Gaussian curve with offset to the extracted CNR profile. To increase 
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reproducibility, the CNR profile along the z-direction of the obtained image stack was 
calculated by a semi-automatic algorithm. In addition to the most commonly used 
reconstruction method—MURA Decoding - a 3D-MLEM algorithm has been adapted 
to deal with transmission noise and a more general camera setup.

This work completes our understanding of the spatial resolution in all three dimen-
sions of our experimental gamma camera. Our presented findings show that CAI makes 
the depth estimation of single-point sources in the near field possible. How precisely the 
source-to-mask distance can be estimated depends on the reconstruction method. In the 
two different reconstruction methods we compared, a large difference in their axial reso-
lution was observed. MURA Decoding was found to be fast and with sufficient precision 
for the nuclear medicine imaging task, while the 3D-MLEM algorithm reconstructs with 
higher precision, both in lateral and axial directions, but it is much slower than MURA 
Decoding: this might be a limitation for real-time reconstruction with a compact gamma 
camera.

Even though the axial resolution was 10–40 times worse than the lateral resolution—
for both reconstruction methods -, gaining depth information from a single image cap-
ture makes CAI a unique collimation technique. When operating in the near field of the 
camera, obtaining a 3D position of point sources adds to the benefits of a coded aper-
ture, apart from the higher resolution and photon harvesting.

Determining the localization error was beyond the scope of this work. Now that we 
have concrete figures for the axial resolution, further investigations are underway to 
assess the full 3D position of point sources, comparing the true source position with its 
estimate based on a single detector image. In order to further analyze the potential intra-
operative use for a gamma camera with coded aperture collimator, experiments closer to 
the real-world use cases are essential. These experiments require a new mask: since the 
most commonly used radionuclide in nuclear medicine is 99mTc [2], whose main emis-
sion is at 140.5 keV, a thicker mask is required to prevent transmission. Moreover, tak-
ing into account the standard diameter of SLNs, a wider FOV is required for the use 
of CAI in this field, as the source’s occupation of the FOV must be limited to obtain 
an image with sufficient contrast. For these reasons, a new coded aperture collimator 
with 0.25 mm holes on a 1 mm thick Tungsten sheet is currently under development by 
the University & INFN Naples group. Furthermore, more research might be aimed at 
accelerating the 3D-MLEM algorithm or reducing the number of necessary iterations 
to make it capable of running in real-time. Only that would render it feasible for intra-
operative usage. Additionally, CAI is known for its problems with extended sources and 
thus its influence on 3D localization must be further investigated.

Appendix A: additional 3D reconstructions
See Fig. 8.
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Appendix B: reconstruction from raw and preprocessed detector image
See Fig. 9.

Fig. 8 The entire image stack of reconstructing the source at 20 equidistant image planes from 5 to 100 mm 
with MURA Decoding (right) and 3D-MLEM (left) for the source at 50 mm (a) and 100 mm (b). The area 
marked by the red square has been magnified for better visualization
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ASIC  Application-specific integrated circuit
CAI  Coded aperture imaging
CNR  Contrast-to-noise ratio
FWHM  Full width at half maximum
FOV  Field of view
MLEM  Maximum likelihood expectation maximization
MURA   Modified uniformly redundant array
NTHT  No-two-holes-touching
PSF  Point-spread function
ROI  Region of interest
SPECT  Single photon emission tomography
SLN  Sentinel lymph node
SLNB  Sentinel lymph node biopsy
THT  Two-holes-touching
URA   Uniformly redundant array
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