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Background
Biokinetic parameters play a crucial role in molecular radiotherapy (MRT) in the assess-
ment of the absorbed dose to lesions or organs at risk as they are closely related to treat-
ment toxicity and efficacy [1].

Determining the time integrated activity ( τ ) accurately is challenging [2, 3]. The assess-
ment of Time Activity Curve (TAC) depends on the data (TAC-Ps) collection and on the 
choice of the model that best fits data, in order to calculate the time integrated activity 
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coefficient (TIAc). Many parameters affect the fit model selection: the number of TAC-
Ps, the time window, the time sampling and the error that affects each measurement.

In 2007 Glatting et al. [4] proposed the use of the corrected Akaike Information Cri-
terion (AICc) and F-test [5–8] methods for the comparison of two different models in 
molecular radiotherapy. In 2013 Kletting et  al. [9] showed the need of using a fitting 
method dedicated to MRT data whereby the physical and biological aspects of the bioki-
netics curve must be considered in order to compute meaningful parameters.

In recent years, several applications based on Machine Learning (ML) algorithms have 
been developed in nuclear medicine [10–12]. The first aim of this study was to imple-
ment ML systems to classify the proper curves model and predict, via regression, the 
TIAc. The secondary aim was to compare the ML performances with the ones obtained 
with fit algorithm and the analytical methods, AICc and F-test.

Methods
In order to have a better understanding of this manuscript we assume the following def-
initions: (i) Points of the Time-Activity Curve (TAC-Ps) are the set of points used to 
determine a TAC (ii) The training set (TrN) and the test set (TsN) consist of 10,000 and 
2000 TAC-Ps, respectively, where each individual TAC-Ps is composed of a number of 
points equal to N.

The study was subdivided in 3 steps: (i) the generation of synthetic TrN and TsN to 
train and test the machine learning systems. (ii) The training of the ML systems, (iii) the 
test of the ML systems and performance evaluation in comparison with analytical meth-
ods. All these steps are fully described in the sections below and shown in Fig. 1.

At the end, in order to show the applicability of the developed methods, the ML sys-
tems were used to calculate the TIAc of 20 patients’ TAC-Ps.

Training and test dataset generation

To train and test the ML systems a series of TrN and TsN were synthetically generated. 
The aim of this first step was to generate TAC-Ps simulating whole-body fractions of 
injected activity (FIAWB) of patient affected by metastatic Differentiated Thyroid Carci-
noma (mDTC), defined as:

where AWB(t) is the whole-body activity at time t and AAdm is the administered activity.
The synthetic TAC-Ps were generated with both a Mono-Exponential (MEf) and Bi-

Exponential functions (BEf) into a band of possible curves, showed in Fig. 2, and their 
values are listed in Table 1. In the “Appendix” the generation method is reported.

To study how N affects the ML performances, 10 different TrN were created, with N 
ranging from 4 to 20, in a time window of 160 h. In order to simulate the patient’s hospi-
talization, the first N-1 points were equally distributed in a range of [0; 54] h, while the 
last point was set at 160 h. Each TrN was used to train the ML systems and it was derived 
from 5000 MEf and 5000 BEf curves.

Similarly, 10 TsN were generated to test the ML systems; they were derived from 
1000 MEf and 1000 BEf curves. The generation procedure is similar to the one of the 

(1)FIAWB(t) =
AWB(t)

AAdm
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TrN, with the addition of Gaussian noise on the FIA coordinates, in order to simulate 
measuring errors. The amount of added noise is randomly extracted from a Gaussian 
distribution centred on the FIA coordinates, with a standard deviation of 5% on the 
FIA values [13].

Fig. 1  Study workflow
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Implementation and training of ML system

Two different supervised learning systems were implemented using Python scripts: one 
for a binary classification task (ML1) and one for a regression task (ML2). Scikit-Learn 
library provided different machine learning models.

Hardware was composed of a personal computer having 10th generation Intel I7 CPU 
with 16 GB RAM.

ML1 is an ensemble of two Logistic Regression models, which used the Soft Voting 
method to predict the proper class [14]. The TAC-Ps were implemented as features (2N 
features considering x and y coordinates), and it returns MEf or BEf class as output.

ML2 is an AdaBoost ensemble composed of 5 Gradient Boosting Regressors (GBRs), 
working sequentially. Each GBR was designed as a chain of 1000 Decision Tree Regres-
sors [14, 16]. The ML2 task is to predict the TIAcs ( Ai, �i ), in order to calculate τ . In 
ML2, TAC-Ps and fit model (MEf or BEf) were used as input features (2N + 1 features). 
Each TrN with a specific number of points individually trains ML2. Therefore, even 
though the ML2 algorithms are always the same, ML2 consists of 10 ML2N, depending 
on the number of points N. To simplify, the subscript N is omitted when referring to 
ML2 in the rest of this text.

The adopted models from Python Scikit-Learn library were customized with hyperpa-
rameters [17] reported in Tables 2 and 3, for the classifier and the regressor respectively. 
All the other ones that are not reported in tables were set with the default values pro-
posed by the library.

Fig. 2  All the generated TACs are into the blue and red bands for Mono-Exponential and Bi-Exponential 
functions respectively

Table 1  TIAc Parameters for the band of possible TACs

MEf BEf

A0 λ0 [h−1] A1 λ1 [h−1] A2 λ2 [h−1]

Lower limit 0.78 0.0676 0.46 0.1078 0.34 0.0476

Upper limit 1.00 0.0165 0.70 0.0225 0.30 0.0044
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Analytical methods: AICc and F‑test

Each TAC-Ps of TsN were fitted using the Trust-Region algorithm, implemented on 
the Matlab toolkit, while a stripping algorithm was used to evaluate the fit starting 
point [18]. Each TAC-Ps was fitted both with MEf and BEf and the two results were 
compared using the AICc and F-Test (with a confidence interval of 95%), as men-
tioned by Kletting et al. [4].

As reported in [7] the AICc is described by the following equation:

where K is the number of estimated parameters included in the model, N is the number 
of points, and SS is the sum of squared deviations (between the measurement and the 
fitted curve). The model with the lower AICc score is the model that is more likely to be 
correct. Once AICc has been calculated for each fitting model, it is possible to compute 
the probability that the correct model (i) has been chosen, as follows:

where � is the difference between the AICc score.
The model with the minimal AICc value between all candidate models indicates the 

best model.
The F-test is a hypothesis test in which only two models can be compared using the 

following equation [4, 7]:

where SS are the sums of squared deviations (for MEf and BEf) and DF are the degrees 
of freedom (DF = N-K). The decision to accept or discard the MEf model is based on 
the  p-value calculated from the F ratio. For a P value below the chosen significance level 

(2)AICc = N · ln
SS

N
+ 2 · K +

2 · K · (K + 1)

N − K − 1

(3)wi =
e

(

−
�
2

)

1+ e−
�
2

(4)F =
(SSME − SSBE)/SSBE

(DFME − DFBE)/DFBE

Table 2  Scikit-Learn hyperparameters used for the customization of ML1

Hyperparameter 1st Estimator 2nd Estimator

solver “liblinear” “sag”

max_iter 100 (default value) 10,000

Table 3  Scikit-Learn hyperparameters used for the customization of ML2

Hyperparameter GBR AdaBoost Regressor

loss l s Linear (default value)

n_estimators 1000 5

learning_rate 0.1 (default value) 0.1

max_depth 5 N.A
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(0.05) the MEf model is rejected and therefore the more complex model is assumed to fit 
the data in a significantly better way.

Test and performance evaluation

A tenfold cross validation of ML1 system has been performed using 80% of the TrN in 
training and the remaining 20% for testing. The classification accuracy (CA) of the cor-
rect fit model was chosen as performance estimator. It is defined as:

where CCME and CCBE are the number of correct classifications for mono- and bi-expo-
nential functions respectively, and 2000 is the number of TACs.

The ability of ML1 system, AICc and F-test to correctly classify the model was evalu-
ated, determining the CA using TsN as input.

The chosen parameter to evaluate the goodness of TIAc prediction was the area under 
each TAC ( τ ) , assessed through the following equation [15]:

where n is equal to 1 for MEf and 2 for BEf and Ai and �i are the parameters obtained 
from the fit.

Two different tests were performed to evaluate the goodness of TIAc prediction: the 
first had the aim to evaluate the best possible performances of the fit algorithm and 
ML2, considering a classification with no errors. Meanwhile the second test evaluated 
the performances of the chains ML1 + ML2, fit + AICc and fit + F-Test, considering all 
the classification errors. In addition, a fourth chain was considered, named fit + AICc-W. 
In this method, an average model was considered, taking into account the probability of 
each model given by the parameter wi . The area τ was calculated as follows:

The performances of the two tests were evaluated assessing the distributions of the 
percentage differences (�τ) between the calculated τ and true one, the interquartile 
range and the Maximum Error Range (MER). The MER was represented as the range 
between the minimum and maximum value of �τ.

Test on patient data

The whole-body TAC-Ps of 20 patients, affected by mDTC, were evaluated employing 
both methods: Fit + F-Test and ML1 + ML2. All TAC data were obtained by calculating 
the geometric mean of measurements taken with a plastic scintillator placed at a dis-
tance of 4 m from the patient and calibrated in terms of H*(10), providing a value of the 
dose rate in µSv/h.

Each TAC-Ps had 5 or 6 points and they were uniformly classified as 10 MEf and 10 
BEf by the F-Test.

(5)CA =
CCME + CCBE

2000

(6)τ =

n
∑

i=1

Ai

�i

(7)τ = τMEf · wMEf + τBEf · wBEf
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Results
The computation time to train ML1 and ML2 sequentially is about eight minutes, while 
the computer takes few seconds to perform the test with 2000 curves. The same hard-
ware takes about 10 min to perform fit + F-test and fit + AICc using the same datasets.

The CA in the cross validation, varying the number of points (N), is reasonably con-
stant at a value of 99%. Figure 3 shows the CA of the three systems using the test dataset 
that is about constant at the value of 98% for ML1, while it increases from 50 to 92% for 
AICc and from 62 to 92% for F-test, when the number of points increases.

Figure 4 shows the �τ distributions obtained using a classification without errors. The 
median values remain approximately constant around 0% for both methods, and also the 

Fig. 3  Classification accuracy obtained by three methods varying the number of points of the TACs 
simulated

Fig. 4  Boxplots representing the Δτ distributions and the MER bands obtained using the fit algorithm 
(blue) and ML2 (red). For each set of measures the performances of the ML system and the fit algorithm 
were compared only for the assessment of the AUC, since it was known a priori if the points follow a 
mono-exponential or a bi-exponential trend. Through the estimation of the fit model parameters the AUC 
was calculated and the distributions were represented
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width of the distribution between the first and third interquartile is independent from 
the number of points with values equal to 4.5% and 3.6% for ML2 and the fit algorithm 
respectively. MER are represented by the bands in Fig. 4, which become thinner as the 
number of points increases, and their ranges vary from [− 14.2; 14.5]% to [− 8.1; 7.5]%, 
and from [− 16.8; 22.1]% to [− 6.7; 17.3]% for ML2 and fit algorithm respectively.

The �τ distributions shown in Fig. 5 were obtained including any classification fail-
ure from AICc, AICc-W, F-test and ML1. Even in this case, varying N, the median val-
ues are approximately constant for all the considered methods, while interquartile range 
varies from 24.7 to 3.1% for the fit + AICc, from 24.6 to 3.1% for the fit + AICc-W and 
from 15.8% to 3.1% for the fit + F-test. The width remains constant around 4.5% for 
the ML1 + ML2 system. With the increase of the number of points, MER varies from 
[− 66.7; 11.9]% to [− 19.3; 20.9]% for fit + AICc, from [− 66.7; 12.0] to [− 20.7; 18.1] for 
fit + AICc-W, from [− 65.3; 32.1]% to [− 15.1; 20.9]% for fit + F-test and from [− 25.2; 
23.6] to [− 10.6; 12.5]% for ML1 + ML2.

When N < 8, �τ distributions obtained by AICc and F-Test are asymmetrical, while for 
N > 8 the distribution width, obtained with the three methods, are equally distributed. 
The MER band of ML2 is always thinner than the other two.

Considering the TAC-Ps of 20 patients, 9 out of the 10 MEfs were classified as BEfs, 
while all the 10 presented BEfs were confirmed to be BEfs by ML1. Figure 6 shows the 
correlation between the τ calculated with ML1 + ML2 and the one calculated with the 
fit Algorithm + F-Test on the 20 patients data, obtaining an R2 equal to 0.93, and a dif-
ference percentage of the results in a [− 26.9;12.8]% range, with a median value of 0.2%.

Discussion
The obtained results show the feasibility of using machine learning system both to clas-
sify the proper model and predict the TIAc with an improvement of the performances.

Fig. 5  Boxplots representing the Δτ distributions and the MER bands obtained using the fit + AICc (blue), 
fit + AICc-W (green), fit + F-test (grey) and ML1 + ML2 (red). For the analytical methods, points were fitted 
with both models and the AICc and F-Test determine which AUC should be considered. For ML, first the best 
fit model was predicted and then the model parameters in order to calculate the AUC​
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The training phase plays a crucial role into obtaining results close to true values, 
and one of the major advantages shown by ML is the possibility for the model to be 
trained with error-free data and then tested with data simulating real curves, result-
ing in a high CA (about 98.5%) and a �τ less than ± 25%. This aspect can be par-
ticularly advantageous in order to train the system without knowing the error of the 
measurement system “a priori”. Training with error-free data is not only advantageous 
but also recommended, as reported by Geron et  al. [14]. The training phase should 
be conducted with the cleanest possible data, to avoid confusing the system and to 
prevent overfitting. To confirm this, training was performed with noisy data similar 
to the ones used in TrN, and a decrease in classification accuracy of around 5% was 
recorded.

The time spent for training is very short, and it needs to be executed just once 
before running classifications and regressions.

The main difference between ML and the analytical method is the workflow. The 
former predicts the model and then assesses the biokinetic parameters. Instead, the 
latter calculates the biokinetic parameters for both models first and then chooses the 
optimal one. This aspect is crucial: the analytical method is not optimized because 
it necessarily performs both fit models and, in addition, the choice of the model is 
strongly dependent on the algorithm fit and on the goodness of the TIAc.

The cross-validation results are better than the ones obtained in the test phase, but 
this was to be expected: in fact, TsN simulates the measurements errors (thanks to 
the addition of Gaussian noise), and so the results get worse without being associated 
with an overfitting condition. Figure 3 shows that CA is not dependent on the num-
ber of points for ML1, while it is highly dependent for AICc and F-test. The analytical 
methods show a low accuracy when the number of points is near to the limit of appli-
cability (from Eqs. 3 and 4 it is possible to notice that F-test and AICc are available 

Fig. 6  Comparison between the τ values obtained with ML1 + ML2 and Fit Algorithm + F-test. The red points 
represent the area under the curve of TACs classified as mono-exponential for the F-test while the blue points 
represent the area under the curve of TACs classified as bi-exponential for the F-test
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only if the number of points is at least 5 and 6 respectively). As reported by Kletting 
et al. in [19], F-test and AICc classify as mono-exponential most of the bi-exponential 
curves (CA = 61.0% and CA = 50.0%) if the number of points is 5 or 6 respectively. 
In addition, the CA obtained with ML1, equal to 98.5%, is higher than the results 
obtained with AICc and F-test.

Figure  4 shows the best results obtainable through the two systems, dedicated to 
the assessment of biokinetic parameters. Considering an error-free classification, the 
width of the �τ distributions, obtained with ML2 and with the fit algorithm, are sim-
ilar: hence, in most cases the two systems are equivalent. The MER obtained from 
ML2, represented by the red band in Fig. 4, does not exceed ± 15% and it is smaller 
than the one obtained using the fit algorithm (about ± 20% and represented by the 
blue band).

Glatting et al. in [4] use fitting algorithms that take into account uncertainties on 
individual points of the TAC. The fits used in the present study, on the other hand, 
do not consider such errors and, in future works, it will be necessary to perform a 
comparison. The use of these algorithms will likely lead to a convergence of perfor-
mance between analytical methods and ML methods, but a priori knowledge of errors 
is not always possible. Therefore, “a priori”-trained ML systems remain a more gen-
eral method for both model selection and obtaining kinetic parameters.

When the input to determine the biokinetic parameters are the classification results 
obtained through ML1, AICc, AICc-W and F-test, performances get worse for all the 
examined four systems (Fig. 5), but the ML1 + ML2 system keeps MER within ± 25%. 
The analytical methods tend to underestimate the area under the curve when the 
number of points is lower than 8. This effect is due to the tendency of the two meth-
ods to classify bi-exponential curves as mono-exponential.

The use of ML in this field can also lead to the possibility of using it in a more radi-
cal way. For example, an attempt was made to train the ML2 system to obtain the area 
under the curve directly as the output, instead of the fit parameters. The obtained 
results were similar to those shown in Figs.  4 and 5, but, according to the authors, 
this is an incorrect way of using ML systems: in fact they are already considered 
black boxes, and using the system in the aforementioned way, without the possibil-
ity to assure the goodness of the fit, can be challenging to justify in the clinical use of 
dosimetry.

It is important to underline that the performance of ML systems has proven to be 
fairly independent from the number of points composing the TACs, whereas a more 
pronounced dependence has been observed in relation to errors in the data. Some 
tests were conducted by varying the error on the points, resulting in a decrease in 
performance. These analyses were not reported in the results section because they 
go beyond the scope of this work, which is to demonstrate the feasibility of using ML 
systems in dosimetry in molecular radiotherapy, for model selection and the calcula-
tion of the area under the TAC curve.

Figure  6 shows the applicability of the ML systems on real data: it confirms that, 
when ML1 and F-test classify the curve with the same model, the assessed biokinetic 
parameters are very similar. On the other hand, when classification does not coincide, 
the distance between the two results increases. An example of these results is shown 
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in Fig. 7. Considering CA for 5 points (shown in Fig. 3) and the graph in Fig. 5, there 
is a high probability that the correct classification is given by ML1, and consequently 
the ML2 result could better represent the biokinetic curve of the patient.

ML1 and ML2 have been trained with curves simulating the whole-body FIA of 
patients administered with [131I]-NaI, but can be trained to perform cumulated activity 
calculations also for different radionuclides in metabolic radiotherapy, and with different 
dosimetry calculation methods (i.e. voxel dosimetry).

In 2017 Sarrut et  al. [20] showed that the selection of the proper fit model reduces 
the number of fit failures in voxel dosimetry (defined as the case in which the optimizer 
does not converge and reaches the maximum number of iterations, or if the R2 is lower 
than a certain threshold). The brief time to perform the 2000 test fits and the independ-
ence of the performance from the number of points make these systems suitable for this 
application.

It is necessary to emphasize that each new application (such as the study of new curve 
models) needs a new training, and that the performance is strongly dependent on the 
similarity between the training samples and the clinical case. In addition, in this study, 
Gaussian-type errors were used on the data because the purpose of the work was to 
demonstrate the feasibility of using ML systems. However, in future studies, it will be 
necessary to investigate how data errors affect performance using different thresholds 
and various types of distributions, such as the Poisson distribution.

This is a study on the feasibility of using the ML system for classifying the correct fit 
model and predicting the TIAc, and it doesn’t have the purpose to study which ML algo-
rithm is the optimal one in performing these two tasks. The choice of the logistic regres-
sion and the AdaBoost algorithm is arbitrary, and a subsequent study is necessary to 
identify which algorithms could increase the performance results.

In conclusion, to the knowledge of the authors, this study is the first to propose the 
use of ML systems for TIAc calculations for dosimetry in MRT. As demonstrated, the 
use is feasible and promising, but it requires further investigations in different fields. 

Fig. 7  TACs of Wholebody FIA of three different patients and fit obtained with fit + F-test and ML1 + ML2 
systems. a The two model agree classifying and fitting the data with a MEf. b Also in this case ML1 and F-test 
classify with a BEf. c In the third case the F-test classify the curve as MEf while it is a BEf for ML2. In this case 
the two obtained fit curves are significantly different
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Therefore, investigations will be performed in order to train such systems with different 
algorithms, treatments, radionuclides, curve models and for voxel dosimetry.

Appendix
Method for synthetic TAC‑Ps generation

The datasets (TRN and TSN) used to train and test the systems consist of TAC-Ps, where 
each point composing them simulates the FIAWB of patients with metastatic differenti-
ated thyroid carcinoma (mDTC), administered with [131I]I-NaI. Each point in the TAC-
Ps simulates the result of the geometric mean between measurements acquired from the 
anterior and posterior positions, using an external probe located 4 m from the patient. 
The TIAc values for the two bands are reported in Table 1 and are obtained using the 
upper and lower bounds of the TACs calculated for 50 patients administered in our 
institution and subjected to dosimetric study.

To generate each of the TAC-Ps, the following method was used for both mono-expo-
nential and bi-exponential trends. For BEf, four time points were selected at 0, 24, 90, 
and 160 h and, for each of these times, a range of possible values was determined by the 
band showed in Fig. 2. From each of these ranges, a random FIAWB value was extracted, 
resulting in 4 values corresponding to the 4 different times. These values were fitted with 
a bi-exponential curve, obtaining the parameters of the generated curve. Finally, a check 
is performed to ensure that the generated curve does not intersect the bands up to 500 h. 
If the check is successful, the curve parameters are recorded, and the TAC-Ps are created 
with the chosen number of points for either TrN or TsN. The procedure for TAC-Ps with 
a mono-exponential trend is identical, with the only difference being that two points are 
extracted at times 0 and 90 h.
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