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Abstract 

Purpose:  In positron emission tomography quantification, multiple pharmacokinetic 
parameters are typically estimated from each time activity curve. Conventionally all but 
the parameter of interest are discarded before performing subsequent statistical analy‑
sis. However, we assert that these discarded parameters also contain relevant informa‑
tion which can be exploited to improve the precision and power of statistical analyses 
on the parameter of interest. Properly taking this into account can thereby draw more 
informative conclusions without collecting more data.

Methods:  By applying a hierarchical multifactor multivariate Bayesian approach, all 
estimated parameters from all regions can be analysed at once. We refer to this method 
as Parameters undergoing Multivariate Bayesian Analysis (PuMBA). We simulated 
patient–control studies with different radioligands, varying sample sizes and measure‑
ment error to explore its performance, comparing the precision, statistical power, false 
positive rate and bias of estimated group differences relative to univariate analysis 
methods.

Results:  We show that PuMBA improves the statistical power for all examined applica‑
tions relative to univariate methods without increasing the false positive rate. PuMBA 
improves the precision of effect size estimation, and reduces the variation of these esti‑
mates between simulated samples. Furthermore, we show that PuMBA yields perfor‑
mance improvements even in the presence of substantial measurement error. Remark‑
ably, owing to its ability to leverage information shared between pharmacokinetic 
parameters, PuMBA even shows greater power than conventional univariate analysis of 
the true binding values from which the parameters were simulated. Across all applica‑
tions, PuMBA exhibited a small degree of bias in the estimated outcomes; however, this 
was small relative to the variation in estimated outcomes between simulated datasets.

Conclusion:  PuMBA improves the precision and power of statistical analysis of PET 
data without requiring the collection of additional measurements. This makes it possi‑
ble to study new research questions in both new and previously collected data. PuMBA 
therefore holds great promise for the field of PET imaging.
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Introduction
Positron emission tomography (PET) is an in vivo neuroimaging method with high bio-
chemical sensitivity and specificity. It is an essential tool for the study of the neurochem-
ical pathophysiology of psychiatric and neurological disease, as well for pharmaceutical 
research. However, PET is a very costly and invasive procedure that involves exposing 
participants to radioactivity, thereby limiting the feasibility of large studies. As a result, 
low statistical power is a common obstacle encountered for studying clinically relevant 
research questions. Efforts to improve the power of PET imaging have typically focused 
on the development of new radiotracers with improved sensitivity as well as new phar-
macokinetic (PK) models with greater accuracy; more recently, there have been data 
standardisation and sharing initiatives to foster inter-group collaboration and increase 
sample sizes [18, 19, 28]. However, there has been comparatively little attention paid to 
the development of more nuanced statistical analysis of PET data for the same purpose.

PET quantification involves fitting PK models to a series of radioactivity concentra-
tions in a region of the brain over time, called a time activity curve (TAC), most often 
using nonlinear least squares (NLS) optimisation. These models typically consist of 
between 1 and 5 parameters of which one (or a function of two or more parameters) is 
used as a measure of the binding of the radioligand to the target protein. Once the TAC 
data from all regions and all subjects have been fit using the selected model, the parame-
ter estimates reflecting target binding for each region and subject are then entered into a 
subsequent statistical model, e.g., a t test comparing patients and control subjects, while 
the other estimated parameters are not taken into account in the analysis.

We recently introduced SiMBA [23], which makes use of Bayesian hierarchical mul-
tifactor modelling to fit PET TAC data and perform statistical analysis simultaneously 
across both individuals and regions. The primary disadvantage of this technique is that it 
is highly computationally intensive, and currently only implements the two-tissue com-
partment model [15]. However, the model improves the estimation of binding param-
eters, and yields substantial advantages in terms of increased precision and statistical 
power for statistical comparisons. Intriguingly, in simulation studies we found that the 
statistical power of SiMBA for detecting group differences was even greater than for 
univariate statistical analysis performed on the “true” binding values from which the 
TACs were generated. This suggests that even if binding measures could be measured 
exactly for each subject, it would still not be possible to attain the statistical power that 
we observed with SiMBA.

Upon further inspection, we discovered that this performance gain could be explained 
by the multivariate modelling strategy employed in SiMBA. In other words, instead of 
extracting only a single parameter as a measure of binding, statistical analysis was per-
formed using all estimated parameters simultaneously, thereby allowing the model to 
exploit shared information among all the PK parameters. This general concept is demon-
strated in Fig. 1: the shape of the 2-dimensional density plot of the two variables is highly 
dependent upon their correlation with one another. If two parameters are highly cor-
related with one another, then the conditional variance of each parameter at any given 
value of the other is considerably smaller. Hence, if the estimation of both variables and 
their correlation with one another are sufficiently precise, then the conditional variance 
of estimated parameters can be reduced to below that of the marginal true values. In 
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other words, by exploiting shared information between parameters, even if those param-
eters are not directly relevant to the statistical contrast of interest, the performance of 
the statistical model can be improved.

In this study, we evaluate whether applying a multivariate statistical analysis to PET 
pharmacokinetic outcome parameters estimated in the conventional manner using NLS 
estimation can also provide inferential advantages, without needing to fit the full SiMBA 
model to the dynamic TAC data. We refer to this approach, by analogy with SiMBA, 
as Parameters undergoing Multivariate Bayesian Analysis: PuMBA. The computational 
requirements for this modelling strategy are on the order of minutes on a single core, 
compared with days for SiMBA, and can readily be adapted to a wider range of phar-
macokinetic models, thereby facilitating its application to a broader range of research 
questions. PuMBA may therefore serve as a convenient intermediate substitute for a full 
SiMBA analysis.

Methods
Model specification

PuMBA can be described as a multivariate hierarchical multifactor model. It is multivar-
iate in that there are multiple dependant variables estimated at once—in contrast with 
a multivariable model in which there are multiple independent variables. It is hierarchi-
cal in that it makes use of “partial pooling”. This means that parameters are modelled as 
originating from a common distribution, and are therefore shrunk towards the global 
mean in an adaptive regularisation process. This shrinkage allows the model to take 
advantage of similarities between individuals within the dataset to improve its inferences 
[3, 24, 25]. Finally, PuMBA is multifactor in that there are multiple hierarchies at once 
within which we perform partial pooling [5].

For PuMBA, as for SiMBA, linear models are defined for each of the PK parameters, 
defined by an intercept, covariates and partially pooled deviations from the expec-
tation value for each individual j and region k, for each of the m PK parameters. We 
define a global mean intercept ( α ) for each parameter, representing the mean value for 
that parameter. For each PK parameter i, the influence of covariates for individual j are 
expressed by a covariate vector ( βi ) multiplied by a covariate matrix ( Xi,j , or more spe-
cifically its transpose, XT

i,j within the linear model). These covariate matrices are defined 

Fig. 1  Comparisons of marginal and conditional densities for multivariate normal distributions. Left: Marginal 
densities of variables X and Y after standardisation. Middle: Multivariate contour plots of the two-dimensional 
densities of X and Y, with either no correlation or a strong correlation between them. Right: Conditional 
densities of variable Y conditional on X when there is either no correlation or a strong correlation between 
variables X and Y
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independently for each PK parameter, and can include variables such as age, sex or 
group membership, for instance. Lastly, we define an additive sequence of differences 
for each of the separate hierarchies [5]: across individuals ( τj ), across regions ( υk ), as well 
as a final term for residual variation ( ǫj,k ). These deviations are drawn from multivariate 
normal distributions, from which each draw is an m-dimensional vector.

This defines the generalised model framework, in which estimation is performed using 
partial pooling for all parameters across all hierarchies, resulting in some degree of 
shrinkage towards the mean. In practice, shrinkage of most parameters towards a shared 
mean is desirable; however, regional differences in certain parameters are so heterogene-
ous that a common distribution cannot be assumed owing to regional neuroanatomical 
differences. For this reason, blood delivery and binding parameters are estimated inde-
pendently from one another without pooling, i.e. using fixed effects. More details are 
provided in the following section.

Model implementation

Firstly, all PK parameters are transformed to their natural logarithms. This serves several 
purposes. Firstly, this naturally constraints all parameters to be positive, corresponding 
to their theoretical range as biological quantities and rate constants. Secondly, this serves 
to define additive differences within the linear model as proportional differences in the 
original quantity, since biological differences or changes in PET are typically assumed 
to exhibit similar proportional, as opposed to absolute, differences between different 
regions or individuals. Lastly, this serves to stabilise the variance between regions: in 
PET, we typically make the assumption that the proportional variance between regions 
is relatively similar.

The input parameters for PuMBA are the PK parameters estimated by the kinetic 
model from the TACs using NLS. Importantly, this means that PuMBA does not 
improve the estimation of PK model parameters at the individual TAC level, but rather 
that it improves subsequent statistical inferences drawn from these parameters.

For the two-tissue compartment (2TC) model [17], the model parameters were K1 , 
VND , BPP and k4 . For the 1TC [17], we used K1 and VT . Finally, for the SRTM [20], we 
used R1 , k ′2 and BPND . We selected parameterisations of the model parameters in such 
a way as to improve the ease by which priors could be defined. To this end, for each 
model we defined a binding parameter and a blood delivery parameter, and defined the 
remaining PK parameters in such a way as to maximise the extent to which shrinkage 
towards a common mean value is most theoretically motivated, i.e. which can be con-
sidered as originating from a common distribution. For the 2TC, BPP was selected over 
BPND , as the former is more identifiable using NLS and in simulations, estimated val-
ues show stronger correlations with the true values compared to BPND . For SRTM, we 
used k ′2 rather than k2 as the former parameter is a property of the reference region and 

θi,j,k = αi + XT
i,jβi + τi,j + υi,k + ǫi,j,k

[τ1,j , . . . , τm,j]
T
∼ MVNormal([0],�Subject)

[υ1,k , . . . , υm,k ]
T
∼ MVNormal([0],�Region)

[ǫ1,j,k , . . . , ǫm,j,k ]
T
∼ MVNormal([0],�residual)
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should theoretically be fairly consistent between regions within each individual, similar 
to how this parameter is set to a global estimate using SRTM2 [39].

For the definition of covariate matrices for each parameter, this task can depend both 
on the tracer and the sample itself. For instance, age might be a predictor for both blood 
delivery and binding. On the other hand, patient status might only be included as a pre-
dictor for binding—unless the condition is also thought to affect regional blood delivery, 
in which case patient status might also be included as a predictor for blood delivery for 
example. Careful judgement should be applied to this task, although model comparison 
methods can also be helpful [12, 24, 38].

Model fitting

We make use of multivariate Bayesian hierarchical multifactor modelling to fit the model 
described above using Markov Chain Monte Carlo (MCMC) sampling. We defined the 
model using the STAN probabilistic programming language [8], which applies Hamil-
tonian Monte Carlo (HMC), with code generated using brms 2.15.0 [7] using R version 
4.0.5 (Shake and Throw) [33].

Priors were specified in such a way as to exclude parameter values which could be 
deemed as unlikely a priori based on domain knowledge, but not to greatly inform the 
model. We used moderately informative normal priors for the intercept ( α ) terms, and 
zero-centred half-normal regularising priors for the standard deviation of all pooled 
parameters. LKJ [21] priors were defined for correlation matrices. More details are pro-
vided in Additional file 1: S1.

NLS parameter estimation was performed using kinfitr [22, 37] for the one-tissue 
compartment model (1TC) and the simplified reference tissue model (SRTM) [20]. For 
the two-tissue compartment model (2TC), the model was fitted directly using NLS using 
an analytical convolution of the arterial input function with the impulse response func-
tion, as previously described [23], solving for K1 , VND , BPP and k4 . In all cases, weights 
were estimated using the default kinfitr weighting scheme.

Model assumptions

There are several major assumptions underlying PuMBA. First, PuMBA assumes that 
the estimated PK parameters are an approximately unbiased representation of the true 
underlying biological quantities. Second, PuMBA assumes that the distribution of these 
true underlying biological quantities can be described by a statistical distribution such 
as the normal distribution. Third, PuMBA assumes that it is possible to model correla-
tions between these PK parameters between individuals and regions if they exist, and 
that these correlations can be exploited to inform inference.

When it comes to implementation, we usually make the assumption that a logarithmic 
transformation is justified, and that parameters exhibit similar proportional variance 
between regions, and exhibit approximately proportional relationships with covari-
ates. Similarly, we tend to assume that the multivariate correlation structure is similar 
between groups—although this assumption can be relaxed at the likely cost of some 
reduction in inferential efficiency.
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Simulations

For the purpose of assessing the performance of this modelling approach, we gener-
ated simulated datasets to compare the proposed methodology with that of a more 
conventional approach, i.e. univariate analysis of the estimated binding param-
eter. Simulation parameters were generated based on the posterior mean values of 
parameters estimated from empirical data by fitting the relevant model to the data 
and simulating from the estimated parameters. The datasets used were as follows: 
97 individuals measured with [ 11C]WAY100635 [9], 16 measurements from 8 indi-
viduals measured with [ 11C]ABP688 [10], 47 measurements with [ 11C]DASB from 33 
individuals [29, 32] and 23 individuals measured with [ 11C]GR103545 [26]. Simulated 
datasets had between 10 and 100 individuals in each of a patient and a control group, 
i.e. between 20 and 200 individuals in total with equal sample sizes in each group. 
Data from nine regions were included for each ligand (more details in Additional 
file 1: S2). For [ 11C]WAY100635, the regions were the dorsolateral prefrontal cortex 
(DLPFC), medial prefrontal cortex (MPFC), hippocampus, amygdala, parahippocam-
pus, insula, anterior cingulate cortex (ACC), posterior cingulate cortex (PCC) and 
dorsal raphe nucleus (DRN). For [ 11C]ABP688, the regions were the DLPFC, MPFC, 
amygdala, hippocampus, dorsal putamen, ventral striatum, insula, PCC and ACC. For 
[ 11C]DASB, the regions were ACC, dorsal putamen, ventral striatum, amygdala, thala-
mus, hippocampus, PCC, insula and midbrain. For [ 11C]GR103545, the regions were 
DLPFC, amygdala, dorsal putamen, hippocampus, insula, MPGC, parahippocampus, 
DRN and ventral striatum.

We simulated new sets of individuals by simulating from the estimated multivari-
ate and univariate normal distributions describing variation between individuals and 
regions within individuals. When simulating regional variation, we used the esti-
mated values for each region, rather than simulating from the estimated distributions. 
In this way, we simulate from the same set of regions, but within a unique set of indi-
viduals, with a unique set of individual variations at the regional level.

We set global group differences in the natural logarithm of the binding parameter to 
be equal to 0.1, corresponding to a 10.5% difference between groups, and separately to 
zero to assess the false positive rate. Simulated data were generated without any effects 
of age or sex, and so these covariates were not included in the PuMBA models applied to 
the simulated data. The univariate analyses performed included t tests and linear mixed 
effects (LME) models with the natural logarithm of the parameter representing ligand 
binding as the dependent variable, considering group and region as fixed effects and 
subject as the only random effect. The t tests were performed independently for each 
region of the dataset. LME analysis was performed across all regions using lme4 [1].

We evaluated power and false positive rates by fitting logspline density functions 
[36] to the upper and lower bounds of the 95% confidence/credible intervals of the 
estimated difference between groups. We then assessed the cumulative density of 
these fitted density functions above and below zero, which we could use to estimate 
the proportion of simulated datasets for which the 95% confidence/credible inter-
val would overlap with (or not overlap with) zero. We have shown previously that 
this method closely aligns with empirical estimates, and allows for the estimation of 
power in small numbers of trials [23].
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TAC simulations

For TAC simulations (Fig. 2), we first fit the TAC data using SiMBA, and then used the 
posterior mean values of the SiMBA fit to simulate new TAC data. We used SiMBA to 
simulate TACs because SiMBA is fitted to TACs directly, and can therefore generate 
TACs corresponding to the estimated population parameters directly. To model these 
data, the TACs were first fitted using NLS to generate PK parameters, which served 
as the input to the LME and PuMBA models. Data were generated with the standard 
deviation of the measurement error equal to that estimated in the original sample. We 
also considered half, double and quadruple the original measurement error to assess 
the sensitivity of the different approaches to the magnitude of the measurement error. 
We assessed the performance of these approaches using 500 simulated datasets for each 
condition.

We also assessed the performance of PuMBA in the same simulated TAC datasets for 
each condition as examined previously with SiMBA [23], in order to compare the perfor-
mance of PuMBA and SiMBA in the same data. In this dataset, group differences were 
equal to 0.182 in the natural logarithm of BPP , corresponding to a group difference of 
20%. This included 50 simulated datasets for each condition owing to the much-greater 
computational burden of SiMBA.

The simulation parameters are provided in Additional file 1: S2. The binding param-
eter for which group differences were simulated and estimated, was BPP.

Fig. 2  Summary of the approaches used for the TAC and parameter simulations
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Parameter simulations

While the TAC simulations above were based on parameters estimated using SiMBA, 
SiMBA only currently applies the 2TC. For SRTM and 1TC, we therefore simulated 
data from estimated PuMBA parameters instead. To this end, the empirical TAC data 
were first fitted using NLS to generate PK parameters, which were then modelled using 
PuMBA (Fig. 2). The posterior mean values of the PuMBA model fit were used to simu-
late new sets of parameter estimates. PuMBA parameters, however, do not allow for the 
discrimination of variance originating from error in the estimation of the PK parameters 
using NLS, and variation at the region-within-individual level: both of these sources of 
variation are part of the residual variance, ǫ . Hence, by generating PK parameters from 
PuMBA, the estimation inaccuracy resulting from the use of NLS is already included 
in the generated PK parameters For this reason, simulating TAC data using the simu-
lated PuMBA PK parameters, and subsequently estimating PK parameters from these 
TACs using NLS, would effectively amount to doubling the influence of estimation error 
in the resulting PK parameters estimated from the simulated data. It would be present 
both in the estimated ǫ matrix from the PuMBA model fitted to the empirical data, as 
well as from the estimation of the PK parameters from the generated TACs themselves. 
Removal of the ǫ term, however, implies the removal of both biological region-within-
individual variance as well as estimation error, which is also not appropriate. For this 
reason, for SRTM and 1TC we estimated only parameter data from the PuMBA param-
eters and not full TACs generated from these parameters. To model these data, PuMBA, 
LME and t tests were applied to the simulated parameter estimates, using 250 simulated 
datasets for each condition.

We made use of data from two radioligands for each model: for the one-tissue com-
partment (1TC) model, we used [ 11C]DASB and [ 11C]GR103545; and for the simplified 
reference tissue model (SRTM), we used [ 11C]WAY100635 and [ 11C]DASB with cerebel-
lar white and grey matter, respectively, as reference region corresponding with previous 
recommendations [16, 31, 32, 34]. The simulation parameters are described in Addi-
tional file 1: S2. The binding parameter used for each model in which group differences 
were simulated and estimated, were BPND for SRTM and VT for the 1TC model.

Data and code availability statement

The R code used to apply this method is provided in an open repository (https://​github.​
com/​mathe​song/​PuMBA_​Mater​ials), including sample simulated datasets. The meas-
ured data used for generating the simulation parameters were drawn from previous 
studies [9, 10, 26, 29, 32].

Results
The results of the simulations are presented below. The metrics by which the methods 
were evaluated and compared are summarised in Fig. 3.

TAC simulations

For the TAC simulations, we compare the performance of PuMBA to that of LME mod-
els applied to the estimated BPP values. For comparison, we also applied LME to the 
“true” BPP values from which the TACs were simulated, i.e. representing the “ideal” case 

https://github.com/mathesong/PuMBA_Materials
https://github.com/mathesong/PuMBA_Materials
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in which binding parameters are perfectly estimated, incorporating only individual-level 
and regions-within-individual-level variation. The results of these simulations are shown 
in Fig. 4. Naturally, we see that the power of both LME and PuMBA is decreased with 
increase in measurement error, although these decreases are of less consequence for 
LME compared to PuMBA. Although concerns have previously been raised about the 
accuracy of direct quantification of BPP [35], i.e. without the use of a reference region, 
we observe that LME applied to the estimated BPP values with the original measure-
ment error exhibits similar or only marginally reduced power compared to when LME 
is applied to the true values. This supports the use of BPP as a sufficiently good index of 
specific binding for these two tracers.

In all cases, the power of PuMBA exceeds that of the LME model for the same degree 
of measurement error. In most circumstances, the power of PuMBA even exceeds that 
of applying LME to the “true” BPP values, i.e. assuming perfect quantification. PuMBA 
analysis yielded lower standard error (Fig.  4B) as well as lower standard deviation 
between simulated datasets (Fig.  4C and Additional file  1: S3) of the estimated group 
differences between simulations relative to LME. These imply, respectively, that PuMBA 
estimates exhibit greater precision, or certainty, of the magnitude of the group differ-
ences; and that PuMBA estimates are more consistent between simulated samples, i.e. 
differ less from sample to sample. Decreases in the standard error of estimates of group 
differences without correspondingly large decreases in the standard deviation of these 

Fig. 3  Summary of the different metrics for evaluating the methods. In each case, the model estimates are 
depicted for each simulated dataset along the y axis, with the posterior mean and its uncertainty represented 
by the point and the error bars, respectively, represented on the x axis. Dotted lines represent zero, and 
dashed lines represent the true values. Red is used to highlight the focus of each metric, of which the mean 
or standard deviation (SD) is assessed, depicted by red text
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estimates across samples would result in an increase in the false positive rate in the pres-
ence of no group differences. However, we see no evidence for any increase in the false 
positive rate when PuMBA is applied to data simulated with no group differences: in 

Fig. 4  TACs were simulated with the standard deviation of measurement error equal to the same, half, 
double or quadruple the estimated measurement error in the original data, represented with colours and 
modelled with LME or with PuMBA. A Power as a function of sample size for a 0.1 difference between patients 
and controls. The black dashed line represents the power of the LME analysis applied to the true values of 
BPP from which the simulations were generated. B Mean standard error of the estimated group differences 
across the simulated datasets. The black dashed line represents the mean standard error of the LME analysis 
applied to the true values of BPP . C Mean estimated group differences across simulated datasets, with the true 
difference of 0.1 shown with a dashed black line. The error bars represent the standard deviation of estimated 
group differences across simulations, shown only for the original measurement error
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fact PuMBA exhibits a lower false positive rate on average for both tracers, and for every 
level of measurement error (Additional file 1: S3).

Both LME and PuMBA exhibit a small degree of bias in the estimated group dif-
ferences (Fig. 4C) presumably owing to inaccuracies in the PK parameters estimated 
using the NLS model fitting procedure, i.e. prior to the parameters being entered into 
the statistical models. For [ 11C]ABP688, there was a tendency to underestimate group 
differences, while for [ 11C]WAY100635 there was a tendency to overestimate group 
differences. In all cases, this bias was greater for PuMBA than for LME, suggesting 
that PuMBA exacerbates this bias. The bias was also more pronounced both in cases 
of smaller sample sizes and greater measurement error. For [ 11C]ABP688 with the 
original measurement error, mean estimates across the simulated datasets of the true 
difference of 0.1 were 0.066 and 0.080 for PuMBA and LME, respectively, for n = 10 ; 
while for n = 100 the mean estimates were 0.084 and 0.089. For [ 11C]WAY100635 
with the original measurement error, the mean estimates were 0.138 and 0.104 for 
PuMBA and LME, respectively, for n = 10 , while for n = 100 they were 0.105 and 
0.101, respectively. In all cases however, the bias of the estimates was smaller than 
the sample-to-sample variation: the bias of the group difference estimates relative 
to the true value was never greater than 65% of the standard deviation of these esti-
mates across simulated datasets (median: 41% for [ 11C]ABP688 and 23% for [ 11C]
WAY100635; see Additional file 1: S3). This implies that the combined effects of sam-
pling error and measurement error are of greater consequence for the estimation of 
group differences compared to the bias in the PuMBA estimate for any given sample.

Comparison with SiMBA

In order to directly compare the performance of PuMBA with SiMBA using the same 
priors, we applied both models to the same simulated datasets as described in our previ-
ous report [23]. Furthermore, in order to maximise the comparability of the outcomes, 
we estimated the same binding parameter, BPND (as opposed to BPP as before) using 
both PuMBA and SiMBA with exactly the same priors on all shared parameters. Firstly, 
MCMC sampling time is much more rapid for PuMBA compared to SiMBA (Fig. 5A), 
showing that fitting a PuMBA model is completed approximately 4000 times more 
quickly compared to SiMBA for the same number of iterations. We show that SiMBA 
outperforms PuMBA, with greater power (Fig. 5B), lower standard error (Fig. 5C), lower 
standard deviations of estimated group differences (Fig. 5D) and a smaller degree of bias 
(Additional file  1: S4). Lastly, while PuMBA and SiMBA both outperform univariate 
LME analysis of the true values of BPND underlying the simulations in terms of power, 
standard error and standard deviation across simulations, they do not outperform a 
PuMBA model fit to the true values of all four of the PK parameters. In other words, 
multivariate (i.e. PuMBA or SiMBA) analysis of all noisy estimated parameters together 
is more efficient than univariate (i.e. LME) analysis of noiseless parameter values for 
the parameter of interest; but multivariate analysis of all noiseless parameters together 
shows the greatest efficiency of all.
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Correlation matrix recovery

Since PuMBA exploits the correlations between PK parameters, it is important to con-
sider how well these correlations are estimated and, as a result, to what extent the bias 
or variance in these estimates affect the quality of PuMBA inferences, especially the false 
negative rate. To this end, we extracted the estimated correlation coefficients from the 
TAC simulations described in “TAC simulations” section to compare with the corre-
sponding matrices that were set for the simulation. We also simulated additional uncor-
related data in which the parameters were generated using multivariate distributions but 
with the correlations between parameters removed, i.e. with diagonal variance–covari-
ance matrices. Using the uncorrelated simulation parameters, we simulated both TAC 
data and parameter data to examine the influence of PK parameter estimation from 
TACs. More details are provided in Additional file 1: S5.

Fig. 5  PuMBA and SiMBA were applied to the same simulated datasets in each condition, with identical 
priors on all shared parameters to compare their performance. Note that the measurement error sigma is 
equal to approximately double the original measurement error [23]. Black lines refer to the performance of 
these models applied to the true values underlying the simulations: univariate LME applied to the binding 
parameter, and multivariate PuMBA analysis applied to the true values of all the pharmacokinetic parameters. 
A MCMC sampling times for PuMBA and SiMBA per iteration. B Power as a function of sample size for a 
0.182 (20%) difference between patients and controls. The shaded area represents the upper and lower 
bounds of the 95% confidence interval obtained using bootstrap resampling. C Standard error of group 
difference estimates as a function of sample size. D Mean estimated group differences across simulated 
datasets, with the true difference of 0.182 shown with a dashed black line. The shaded area represents the 
standard deviation of estimated group differences across simulations for each approach, with their individual 
boundaries emphasised with dotted lines
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For simulated uncorrelated parameter data, estimated correlations were centred 
around zero for all parameter pairs, demonstrating that PuMBA itself is capable of 
recovering the parameter intercorrelations accurately in the absence of any bias intro-
duced during PK parameter estimation from TACs. However in simulated TAC data, 
the recovery of the parameter intercorrelations was reasonably poor for most pairs of 
PK parameters in the individual ( τ ) correlation matrices, both for the correlated and 
uncorrelated data, in contrast to SiMBA [23]. Together, these results imply that the poor 
recovery of the true parameter correlations is primarily due to bias in the estimation of 
the PK parameters from TACs using NLS.

Despite the poor recovery of parameter intercorrelations, application of PuMBA to 
uncorrelated data resulted in higher mean standard error and standard deviation of 
group difference estimates, and reductions in statistical power relative to the original 
correlated data. In the correlated simulations, estimated correlation coefficients were 
closer to the true simulated values for [ 11C]ABP688 than for [ 11C]WAY100635, which 
may explain the greater improvements performance observed with PuMBA relative to 
LME with [ 11C]ABP688. Together, these results suggest that the power and precision 
of PuMBA estimates are influenced by the true underlying parameter intercorrelations, 
and are likely improved when these intercorrelations are more accurately estimated.

PuMBA therefore exploits parameter intercorrelations to improve its inferences, yet 
these correlations tend to be estimated relatively poorly. We were concerned that this 
might imply that, in the absence of true correlations, the artefactual correlations aris-
ing from parameter estimation bias might yield a higher risk of false positive conclu-
sions. However, for both [ 11C]ABP688 and [ 11C]WAY100635 we observed no apparent 
increase in the false positive rate in either of the uncorrelated datasets relative to either 
PuMBA applied to the correlated datasets or to LME (Additional file 1: S5).

Prior sensitivity

Next, we wanted to assess the sensitivity of the PuMBA model performance to ill-
defined priors. We examined the effect of prior misspecification on simulated [ 11C]
ABP688 data, for which PuMBA yielded the greatest improvements relative to LME 
in order to examine the extent to which this improvement would be diminished. Pri-
ors are defined over many parameters, but the only informative priors are defined over 
the global intercepts, as opposed to the other priors which merely regularise estimates 
towards zero. For this reason, we randomly halved or doubled all four of the global inter-
cept priors in each simulation by adding or subtracting 0.69 to the prior mean (in its nat-
ural logarithm), where the randomisation was for each parameter within each simulated 
dataset, i.e. K1 might be doubled while VND might be halved in the prior specification for 
one dataset. These misspecifications appear to make little-to-no difference to the perfor-
mance of the model across all of the evaluation metrics (Additional file 1: S6). The only 
apparent change is that the SD of the group difference estimates appears to be slightly 
elevated in small sample sizes, which is to be expected, since the influence of priors will 
be greater when the influence of the likelihood is weaker, i.e. when the data itself are less 
informative.
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Parameter simulations

In order to test whether PuMBA can also be applied for other kinetic models which can-
not yet be modelled using SiMBA, we performed additional parameter-only simulations 
using the 1TC and SRTM, as described in “Parameter simulations” Section. The results 
of these simulations are shown in Fig. 6, in which we observe increases in power for lin-
ear mixed effects (LME) modelling relative to t tests, and improved power for PuMBA 
relative to LME. We observe larger improvements in power for SRTM, while improve-
ments in power for the 1TC were more modest. In all cases, these improvements in 
power were not associated with any increase in false positive rate (Additional file 1: S7).

When examining the estimated group differences, we observed lower standard error 
as well as lower standard deviation of the estimated group differences between simu-
lated datasets for LME relative to t tests, as well as for PuMBA relative to LME. While 
we observed no bias in the mean estimated group differences for t tests or LME, PuMBA 
showed slightly biased estimates in all cases, with more bias in smaller sample sizes 
(Additional file 1: S7).

Application in real data

Lastly, in order to demonstrate the application of PuMBA in real data, we applied 
PuMBA to study patient–control differences in an empirical dataset. For this purpose, 
we examined [ 11C]GR103545 data, consisting of 13 healthy controls and 10 patients with 
major depressive disorder (MDD) (described in more detail in [26]), with TACs from the 
nine regions used in the simulations.

Fig. 6  Power as a function of sample size for a 0.1 difference between patients and controls. The models are 
the one-tissue compartment model (1TC) and the simplified reference tissue model (SRTM)
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Fitting the 2TC to this data using NLS resulted in good fits to the data, but highly vari-
able parameter estimates. For instance, we would not expect VND to vary greatly between 
individuals and regions. For VND the median was 0.51, while the 5% and 95% quantiles 
were equal to 4% and 3900% of this figure, respectively. To assess identifiability, we 
examined the condition number of the variance–covariance matrix (i.e. the ratio of the 
maximum to the minimum eigenvalues of the matrix after rescaling the columns to unit 
Euclidean norms). Of the 207 NLS TAC fits, only 40% had a condition number lower 
than the threshold of 106 recommended by [6]. This indicates severe ill-conditioning of 
the resulting fits, and thereby high sensitivity to small perturbations in the data. For this 
reason, we conclude that the 2TC model applied to [ 11C]GR103545 data is insufficiently 
identifiable. In contrast, for [ 11C]ABP688, estimates were less variable (5% and 95% 
quantiles of estimated VND values were equal to 57% and 151% of the median), and 100% 
of the TAC fits yielded acceptable condition numbers, together implying much better 
identifiability of 2TC fits. Hence, for [ 11C]GR103545, we fit the 1TC model instead, pro-
ducing fits of which all produced an acceptable condition number.

For fitting PuMBA to the [ 11C]GR103545 data, we used identical priors to those used 
for the analysis of the simulated [ 11C]GR103545 data above, but also including age (cen-
tred, in decades) and sex as covariates for both log(K1 ) and log(VT ), with priors defined 
by normal distributions centred at zero with standard deviations of 0.1. Because we do 
not expect there to be differences between MDD patients and controls in blood flow, 
we did not include patient status as a predictor for log(K1 ). Estimating log(VT ) using the 
same parameters for both LME and PuMBA resulted in group-difference estimates with 
greater precision for PuMBA (SE = 0.097) compared to LME (SE = 0.132). The magni-
tude of patient–control difference estimates in log(VT ) were similar too, with both mod-
els yielding estimates which were within one SE of one another (LME 0.163; PuMBA 
0.086)—although both models’ 95% CI intervals for this parameter overlapped with zero.

Discussion
In this study, we show that a multivariate statistical analysis of all estimated PET phar-
macokinetic parameters using PuMBA yields significant inferential advantages over uni-
variate analysis of the parameter of interest performed without considering the other 
parameters. We also show that PuMBA can be fruitfully applied even when there is a 
substantial degree of measurement error. As would be expected, because PuMBA is 
applied to parameter estimates, it cannot outperform a similar analysis which is con-
ducted on the full TAC data in which quantification and statistical analysis are both able 
to benefit from the hierarchical multivariate framework, i.e. SiMBA. However, PuMBA 

Table 1  Systematic comparison of the different methods applied

LME PuMBA SiMBA

Modelling and statistical analysis 2 consecutive steps 2 consecutive steps 1 step, simultaneously

Input data PK parameters PK parameters TACs

Partial pooling Univariate Multivariate Multivariate

Inferential paradigm Frequentist Bayesian Bayesian

Computation time Less than a second Minutes Hours to days
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models can be fitted in minutes, in contrast to days required by SiMBA (Table 1). Fur-
thermore, PuMBA can be directly applied to data from more PET pharmacokinetic 
models as a substitute for conventional statistical analysis approaches, while SiMBA 
requires the user to incorporate the pharmacokinetic model itself into the Bayesian 
model, which can be challenging.

While PuMBA can more easily be applied to a wider range of pharmacokinetic models 
than SiMBA, this does not necessarily imply that it can be applied when the identifi-
ability of PK parameters for a given model and tracer is poor. For instance, the identifi-
ability of the 2TC is reasonably good for [ 11C]WAY100635 and [ 11C]ABP688, in contrast 
with [ 11C]GR103545 for which the 2TC is rather poorly identified [27]. On the other 
hand, SiMBA stabilises the fitting of the PK model itself using the hierarchical multifac-
tor framework, and therefore has the additional advantage of improving model identifi-
ability: this is not a property of PuMBA. Hence, while SiMBA is more generalisable in 
the sense that it makes the application of the more complex models possible for a wider 
variety of PET tracers for which they are otherwise insufficiently identifiable, PuMBA 
is more generalisable in the sense that it can, without any substantive modifications, be 
applied to data originating from a wider assortment of PK models, including reference 
tissue models—provided that the parameters are sufficiently identifiable.

Since PuMBA, in contrast to SiMBA, cannot improve the estimation of the PK param-
eters themselves from the NLS model, its function is only to take advantage of infor-
mation shared between individuals, regions and parameters. Both LME and PuMBA 
make use of partial pooling, and both make use of the same predictors for the binding 
parameter. Thus, the only difference between the performance of these models is due to 
the multivariate partial pooling strategy applied in PuMBA, in contrast to the univari-
ate partial pooling applied in LME. Moreover, by exploiting the relationships between 
PK parameters, PuMBA exhibits greater precision and power compared to a univari-
ate LME analysis of even the true binding parameters from which the simulations were 
generated, i.e. as if binding could be estimated perfectly. This can be described with an 
analogy. Consider that we wish to compare binding potential values for two groups of 
individuals. We have the option of either measuring all of our participants in a noisy 
PET system and modelling their resulting TACs or of being informed of each individual’s 
true binding potential value by an omniscient oracle. Counter-intuitively, the present 
results suggest that we ought to shun the oracle, and perform the PET study as planned 
using PuMBA, or SiMBA, for the statistical analysis. If, however, the oracle could be per-
suaded to provide us with the true values of all of the PK parameters, only then would 
it be advantageous to accept the oracle’s aid. This corresponds to the comparisons of 
SiMBA and PuMBA with the solid and dashed black lines in Figs. 4A, B and 5B, C. His-
torically, one important focus of PET PK modelling method development has been to 
improve the accuracy of estimated PK parameters in order to improve their inferential 
efficiency. In contrast, SiMBA and PuMBA, by incorporating the otherwise irrelevant 
PK parameters which are conventionally discarded during univariate statistical analysis, 
exhibit better inferential properties compared to even what had previously been con-
sidered optimal. The present results imply that this previous floccinaucinihilipilification 
regarding the additional parameters has been detrimental.
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It cannot be assumed that a multivariate analysis will improve the power of any given 
statistical comparison. With reference to Fig.  1, it is clear that with sufficiently strong 
correlations between parameters, and sufficiently precise estimates of the parameters 
and their correlations with one another, the variance of the conditional distribution of 
an estimated parameter can be reduced to below that of the marginal distribution of the 
true parameter. However, in the presence of high uncertainty, small samples or low cor-
relation between variables, this potential gain is likely to be reduced: we see some evi-
dence of this with n = 10 in Figs. 4A and 5B. We also see that PuMBA yielded greater 
improvements in precision and statistical power when the correlation matrices were 
more accurately estimated in [ 11C]ABP688 compared to [ 11C]WAY100635.

In all applications, PuMBA exhibited bias in its group difference estimates, particularly 
for smaller sample sizes and with larger measurement error, for instance, in Fig. 4C. We 
find that this bias was never greater than 65% of the standard deviation of sample-to-
sample estimate variability, which implies that even in the worst case scenario, the esti-
mated differences for [ 11C]ABP688 will still be greater than the true value approximately 
25% of the time given infinite replications of the same study. Although the magnitude 
of this bias is not large, it is still important to understand its source. One factor is that 
PuMBA makes use of a regularising prior for the estimation of group differences, which 
makes the model sceptical of large differences between groups, effectively shrinking the 
estimated group differences towards zero. However, for [ 11C]WAY100635, we observe 
that the bias is positive, which is incompatible with shrinkage being solely responsible 
for the observed bias. This corresponds with the observation that the LME group differ-
ences are also biased in the same direction as the PuMBA estimates in the TAC simula-
tions, but to a smaller degree in each case. This suggests that the bias is also partially 
explained by identifiability issues in the PK parameter estimation from the TAC data 
using NLS, and that bias in the estimation of the binding parameter is also accompa-
nied by bias in the estimation of the other model parameters in a systematic fashion. 
This corresponds with the results of the uncorrelated data simulations, in which correla-
tions were partially induced between parameters by the PK parameter estimation from 
TACs. It is noteworthy, however, that PuMBA exacerbates this bias, presumably owing 
to its estimation of the correlations between the PK parameter estimates with potentially 
induced correlations. Finally, for 1TC parameter simulations of [ 11C]DASB, there is posi-
tive bias in small sample sizes, which cannot be explained by either of the above reasons. 
This suggests that the identifiability of the PuMBA model itself may also play a role in 
the observed bias, particularly in small sample sizes. For these reasons, the precise mag-
nitude of PuMBA estimates should be interpreted with some degree of care particularly 
in applications for which the identifiability of the individual parameters is poor, or in 
small sample sizes.

While PuMBA is much faster to estimate and easier to implement compared to 
SiMBA, it does still require additional effort from the analyst compared to conventional 
approaches. Firstly, we would advise paying more attention to the estimated parame-
ters generated by the NLS procedures prior to analysis: even when estimates of binding 
potential, for example, may appear reasonable, estimates for some of the other parame-
ters could be problematic. To this end, we recommend estimating the parameters for the 
PuMBA analysis (i.e. VND and BPP instead of k2 and k3 in the context of the 2TC) directly 
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in the NLS procedure, and using reasonably conservative upper and lower limits, cou-
pled with estimating the fit with multiple starting points [30]. In this way, overall fits are 
often similar, but we observed that we less frequently obtained biologically inconsist-
ent values for the combined parameters. We thereby minimise the chances of our NLS 
model yielding parameter estimates obtained from a local minimum. We also advise 
examining distributions of parameters as well as assessing the condition number of the 
variance–covariance matrices, after standardisation of the Euclidean norms of the col-
umns [2], of NLS fits to assess identifiability. For the condition number, [6] recommends 
a threshold of 106 . If VND or BPP , for instance, show orders of magnitude more variation 
than would be expected biologically, then this may either call for a simpler model (such 
as the 1TC used in “Application in real data” Section), or perhaps PuMBA may not be 
appropriate for the particular application. Another additional requirement of PuMBA 
compared to conventional approaches is that, because all parameters are included 
in the PuMBA model, the analyst must define linear model specifications for each of 
them. Age, for instance, might affect blood delivery, or the kinetics of the radioligand 
in a reference tissue, even if it does not affect the binding potential for a particular tar-
get. Analysts should also carefully consider whether the examined condition itself might 
also affect any of the other parameters. For instance, while most psychiatric conditions 
would probably not be expected to affect blood flow, there may be neurological condi-
tions which would be expected affect other parameters. Furthermore, because PuMBA 
is a Bayesian model, prior distributions need to be defined not only for all covariates, 
but for all parameters in the model. Using PuMBA therefore requires more care and 
consideration than conventional approaches in order to be applied most effectively, and 
we recommend collaboration between researchers with domain expertise and technical 
expertise. This allows for the incorporation what is already known about the relevant 
clinical and biological constraints into the specification and priors of the model for a 
given research question. While we did not observe a large effect of prior misspecification 
on the results, this is likely caused by the fact that none of our prior definitions were par-
ticularly informative, and because none of these targets exhibit a particularly high degree 
of heterogeneity across individuals such as observed in tau PET imaging, nor does this 
heterogeneity follow non-normal distributions. Domain expertise can be exploited for, 
among other things, testing more specific hypotheses using highly informative priors, 
making use of other statistical distributions, allowing different groups to express differ-
ent covariance patterns, or for incorporating patient-group effects in other PK param-
eters other than binding if justified by the relevant biology. From a technical perspective, 
a Bayesian workflow [4, 13] incorporating model comparison [12, 24, 38] and posterior 
predictive distribution visualisation [4, 11] can also be instructive for optimally defining 
complex models as a complement domain expertise.

In order to facilitate the application and extension of this methodology in novel set-
tings by other researchers, we have provided a repository including simulated datasets 
as well as analysis notebooks including code and outputs to demonstrate the application 
of this approach for each of the PK models described above. All software is freely avail-
able, easily downloaded and open-source, and the provided code can easily be used as a 
template from which to modify this approach for use in new applications. While we have 
demonstrate the use of PuMBA for four PET radioligands, and for three different PK 
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models, we cannot guarantee that PuMBA can be fruitfully applied to any novel applica-
tion in PET. Prior sensitivity analysis and posterior predictive checking are helpful for 
more closely examining the validity of inferences obtained using PuMBA, and Bayesian 
modelling in general.

One interesting observation which emerges from the fitting of all of the datasets is 
the fact that inter-individual variation (i.e. τ ) in blood delivery ( K1 and R1 ) and bind-
ing ( BPP , VT and BPND ) were positively correlated with one another across all models 
and tracers, using both PuMBA and SiMBA (Table 2 and Additional file 1: S2). Impor-
tantly, these correlations refer to the correlation of partially pooled estimates (i.e. ran-
dom effects) of the PK parameters at the individual level, and not to the parameters 
estimated for each individual TAC. While PuMBA may be more sensitive to issues of 
poor identifiability when fitting the PK model, SiMBA ought to be more robust to this 
possibility. The exact meaning of this observation is beyond the scope of the current 
investigation, and perhaps cannot be understood using pharmacokinetic modelling 
alone. However, this raises questions about how independent the parameters of these 
models are, or ought to be between individuals; as well as whether this has implica-
tions for how these parameters can be understood.

Potential avenues for future research include examining the similarity of estimated 
parameter intercorrelations between different datasets collected by different groups, 
assessing the factors which contribute to the differential performance of PuMBA in 
different settings, as well as whether PuMBA could be applied simultaneously to data 
collected using multiple radioligands in the same individuals to estimate and take 
advantage of similarities in blood delivery or in target protein levels within individu-
als. Another promising direction for future work might be to incorporate the spatial 
distributions of these parameters throughout the brain or along the cortical surface 
[14] with parametric imaging.

In conclusion, PuMBA allows researchers to make more precise and powerful sta-
tistical inferences, and thereby extract more information from a given dataset without 
needing to collect any additional information. PuMBA takes on the order of minutes 
to fit on a single computer core and can more easily be applied to a wider range of 
pharmacokinetic models than SiMBA. PuMBA may therefore serve as a convenient 

Table 2  Blood flow and binding parameters were positively correlated across all radiotracers and PK 
models in their inter-individual correlation matrices estimated by PuMBA

Model Radiotracer Estimated 
correlation

2TC [11C]ABP688 0.89

2TC [11C]WAY100635 0.81

1TC [11C]GR103545 0.53

1TC [11C]DASB 0.39

SRTM [11C]DASB 0.64

SRTM [11C]WAY100635 0.54
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intermediate substitute for a full SiMBA analysis, and a useful tool for statistical anal-
ysis of PET data in general.
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