MEETING ABSTRACT

EJNMMI Research a SpringerOpen Journal

Open Access

Motion estimation in PET-MRI based on dual registration: preliminary results for human data

Michael Fieseler^{1,2*}, Thomas Kösters³, Christopher Glielmi⁴, Fernando Boada³, David Faul⁴, Matthias Fenchel⁵, Robert Grimm⁶, Xiaoyi Jiang^{1,2}, Klaus P Schäfers¹

From PSMR14: 3rd Conference in PET/MR and SPECT/MR Kos Island, Greece. 19-21 May 2014

¹European Institute for Molecular Imaging, University of Münster, Münster, Germany

SpringerOpen⁶

In current motion correction approaches in PET-MRI, motion information from PET data is neglected. We present an approach where PET and MRI data are used for motion estimation simultaneously. The presented approach has been evaluated on phantom data before [1]. Here, we present first results for human PET-MRI data.

The registration functional for dual registration is given by

$$J(y) = D(T_{MR}(y), R_{MR}) + \beta - D(T_{PET}(y), R_{PET}) + \alpha - S(y)$$
(1)

Here, R_{MR} and R_{PET} denote two reference volumes and T_{MR} and T_{PET} the template volumes to be registered, D is a distance functional, and S is a regularizer. The scalar value β allows to weight the influence of the data term for PET [1]. The functional has been implemented using the FAIR toolbox [3].

Five patients were scanned following a clinical FDG scan. A self-gated radial VIBE sequence [2] and PET Listmode data were acquired. The datasets were re-binned into 5 coinciding PET and MRI phases (gates).

Registration were computed for $\beta \in \{0, 0.5, 1, 2\}$, α was chosen empirically as $\alpha = 20$.

© 2014 Fieseler et al; licensee Springer This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correlation coefficients were computed for the heart region.

In Figure 2a we show correlation values for each gate of dataset 4. In all gates the correlation of the PET data is improved using the joint motion estimation approach using a weight of $\beta = 2$. In 2b average correlation values of all gates are shown for all datasets processed.

We have shown that using a joint motion estimation approach the correlation of PET data is improved compared to an estimation of the motion solely on MRI data. Currently, we are evaluating motion-correcting reconstructions using the motion estimates from the proposed method.

Authors' details

¹European Institute for Molecular Imaging, University of Münster, Münster, Germany. ²Department of Computer Science, University of Münster, Münster, Germany. ³Center for Advanced Imaging Innovation and Research, NYU Langone Medical Center, New York, USA. ⁴Siemens Medical Solutions USA, New York, USA. ⁵Siemens AG, Healthcare Sector, Germany. ⁶Pattern Recognition Lab, University of Erlangen-Nürnberg, Erlangen, Germany.

Published: 29 July 2014

References

- 1. Fieseler M, Gigengack F, Jiang X, Schäfers KP: Motion correction of whole-body PET data with a joint PET-MRI registration functional. *BioMedical Engineering OnLine* 2014, 13(Suppl 1):S2.
- Grimm R, Fürst S, Dregely I, Forman C, Hutter JM, Ziegler SI, Nekolla S, Kiefer B, Schwaiger M, Hornegger J, et al: Selfgated radial MRI for respiratory motion compensation on hybrid PET/MR systems. Medical Image Computing and Computer-Assisted Intervention– MICCAI 2013, 17-24.
- 3. Modersitzki J: Fair: Flexible Algorithms for Image Registration (Fundamentals of Algorithms). Society for Industrial and Applied Mathematics Philadelphia; 2009.

doi:10.1186/2197-7364-1-S1-A39

Cite this article as: Fieseler *et al.*: Motion estimation in PET-MRI based on dual registration: preliminary results for human data. *EJNMMI Physics* 2014 1(Suppl 1):A39.